Example: Model Checking and Repair

Barbara Jobstmann
Verimag/CNRS (Grenoble, France)

November 13, 2009

Homework

1. Given $G=\left(S, S_{0}, E\right)$ and $F \subseteq Q$, give an algorithm that computes the 0 -Attractor (F) in time $O(|E|)$.

Solution:

1. Preprocessing: Compute for every state $s \in S_{1}$ outdegree out(s)
2. Set $n(s):=\operatorname{out}(s)$ for each $s \in S_{1}$
3. To breadth-first search backwards from F with the following conventions:

- mark all $s \in F$
- mark $s \in S_{0}$ if reached from marked state
- mark $s \in S_{1}$ if $n(s)=0$, other set $n(s):=n(s)-1$.

The marked vertices are the ones of $\operatorname{Attr}_{0}(F)$.

Homework (cont.)

2. Consider the game graph shown in below and the following winning conditions:
(a) $\operatorname{Occ}(\rho) \cap\{1\} \neq \emptyset$ and
(b) $\operatorname{Occ}(\rho) \subseteq\{1,2,3,4,5,6\}$ and
(c) $\operatorname{Inf}(\rho) \cap\{4,5\} \neq \emptyset$.

Compute the winning regions and corresponding winning strategies showing the intermediate steps (i.e., the Attractor and Recurrence sets) of the computation.

Homework (cont.)

3. Given a game graph $G=\left(S, S_{0}, T\right)$ and a set $F \subseteq S$. Let W_{0} and W_{1} be the winning regions of Player 0 and Player 1, respectively, in the Buchi game (G, F). Prove or disprove:
(a) The winning set of Player 0 in the safety game for $\left(G, W_{0}\right)$ is W_{0},
(b) If f_{0} is a winning strategy for Player 0 in the safety game for $\left(G, W_{0}\right)$, then f_{0} is also a winning strategy for Player 0 in the Buchi game for (G, F),
(c) the winning set of Player 1 in the guaranty game for $\left(G, W_{0}\right)$ is W_{1}, and
(d) if f_{1} is a winning strategy for Player 1 in the guaranty game for $\left(G, W_{0}\right)$, then f_{1} is also a winning strategy for Player 1 in the Buchi game (G, F).

MC and Repair Example

Lock Example

1	while(...) \{
2	if (...) \{
3	lock() ;
4	gotlock++;
	\}
	\cdots
5	if (gotlock!=0)
6	unlock();
7	gotlock--;
	\}
8	

$\underline{\text { Properties }}$

1. P1: do not aquire a lock twice
2. P2: do not call unlock without holding the lock

Transition System of P

Recall LTL

Boolean Operators: $\neg, \wedge, \vee, \rightarrow, \ldots$
Temporal Operators:

- next: $\bigcirc \varphi \quad .$. in the next step φ holds
- until: $\varphi_{1} \cup \varphi_{2} \quad \ldots$ at some point in the future φ_{2} holds and until then φ_{1} holds

Useful abbreviations:

- eventually: $\diamond \varphi=\operatorname{true} \mathrm{U} \varphi$
- always: $\square \varphi=\neg \diamond \neg \varphi$
- weakuntil: $\varphi_{1} \mathrm{~W} \varphi_{2}=\left(\varphi_{1} \mathrm{U} \varphi_{2}\right) \vee \square \varphi_{1}$

Note that
$\neg\left(\varphi_{1} \mathrm{U} \varphi_{2}\right)=\left(\neg \varphi_{2} \mathrm{U} \neg \varphi_{1} \wedge \neg \varphi_{2}\right) \vee \square \neg \varphi_{2}=\neg \varphi_{2} \mathrm{~W}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

Our properties in LTL

1. P1: do not aquire a lock twice Whenever we have called lock, we are not allowed to call it again before calling unlock.

Our properties in LTL

1．P1：do not aquire a lock twice
Whenever we have called lock，we are not allowed to call it again before calling unlock．$\square((l=3) \rightarrow \bigcirc(\neg(l=3) \mathrm{W}(l=6)))$

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again before calling unlock. $\square((l=3) \rightarrow \bigcirc(\neg(l=3) \mathrm{W}(l=6)))$
2. P2: do not call unlock without holding the lock

Our properties in LTL

1．P1：do not aquire a lock twice
Whenever we have called lock，we are not allowed to call it again before calling unlock．$\square((l=3) \rightarrow \bigcirc(\neg(l=3) \mathrm{W}(l=6)))$

2．P2：do not call unlock without holding the lock

$$
(\neg(l=6) \mathrm{W}(l=3)) \wedge(l=6 \rightarrow \bigcirc(\neg(l=6) \mathrm{W}(l=3)))
$$

From LTL to Automata: Expansion rules

- $\square \varphi=\varphi \wedge \bigcirc \square \varphi$
- $\diamond \varphi=\varphi \vee \bigcirc \diamond \varphi$
- $\varphi_{1} \mathrm{U} \varphi_{2}=\varphi_{2} \vee\left(\varphi_{1} \wedge \bigcirc \varphi_{1} \cup \varphi_{2}\right)$
- $\varphi_{1} \mathrm{~W} \varphi_{2}=\varphi_{2} \vee\left(\varphi_{1} \wedge \bigcirc \varphi_{1} \mathrm{~W} \varphi_{2}\right)$

Example: $\square((l=3) \rightarrow \bigcirc(\neg(l=3) \mathrm{W}(l=6)))$
Shortcuts: l_{3} for $(l=3)$ and l_{6} for $(l=6)$

$$
\varphi=\square\left(\neg l_{3} \vee\left(l_{3} \wedge \bigcirc\left(\neg l_{3} \mathrm{~W} l_{6}\right)\right)\right)
$$

Expand: $\left(\neg l_{3} \vee\left(l_{3} \wedge \bigcirc\left(\neg l_{3} W l_{6}\right)\right)\right) \wedge \bigcirc \varphi$
DNF: $s_{0} \vee s_{1}$ with $s_{0}=\neg l_{3} \wedge \bigcirc \varphi$ and $s_{1}=l_{3} \wedge \bigcirc\left(\neg l_{3} \mathrm{~W} l_{6} \wedge \varphi\right)$

Example

Expand: $\neg l_{3} \mathrm{~W} l_{6} \wedge \varphi$
$\left(l_{6} \vee\left(\neg l_{3} \wedge \bigcirc\left(\neg l_{3} \mathrm{~W} l_{6}\right)\right)\right) \wedge\left(\left(\neg l_{3} \wedge \bigcirc \varphi\right) \vee\left(l_{3} \wedge \bigcirc\left(\neg l_{3} \mathrm{~W} l_{6} \wedge \varphi\right)\right)\right)$
(1) $l_{6} \wedge \neg l_{3} \wedge \bigcirc \varphi: s_{2}$
(2) $l_{6} \wedge l_{3} \cdots=$ false
(3) $\left(\neg l_{3} \wedge \bigcirc\left(\neg l_{3} \mathrm{~W} l_{6}\right)\right) \wedge\left(\neg l_{3} \wedge \bigcirc \varphi\right): s_{3}$
(4) $\left(\neg l_{3} \wedge \cdots \wedge l_{3} \cdots=\right.$ false

Model Checking

$$
\begin{gathered}
L(\text { Program }) \subseteq L(P 1) \\
L(\text { Program }) \cap L(\neg P 1)=\emptyset
\end{gathered}
$$

$\underline{\text { Automaton for } \neg \mathrm{P} 1}$

$$
\begin{aligned}
& \neg P 1=\neg \square\left(l_{3} \rightarrow \bigcirc\left(\neg l_{3} W l_{6}\right)\right) \\
& \neg P 1=\diamond\left(l_{3} \wedge \bigcirc\left(\neg l_{6} \cup l_{3}\right)\right)
\end{aligned}
$$

Simplified version:

$\underline{\text { Product of Program and Property }}$

Counterexample

1. Line 1: enter while loop

Repair

Repair: Step 1 - Free variables

1	while(...) \{
2	if (...) \{
3	lock() ;
4	gotlock=?;
	\}
	. .
5	if (gotlock!=0)
6	unlock() ;
7	gotlock=?;
	\}
8	

Game on P

Repair: Winning Condition

Note in MC: non-determinism due to input and due to automaton are treated the same way!

In Game: non-determinism may cause troubles.

Deterministic Automata/Observer

Recall,

$$
\varphi=\square\left(\neg l_{3} \vee\left(l_{3} \wedge \bigcirc\left(\neg l_{3} \mathrm{~W} l_{6}\right)\right)\right)
$$

Note: this is a safety automaton.

Add Automaton to Game on P

A Winning Strategy

A Correct Program

1	while(...) \{
2	if (...) \{
3	lock() ;
4	gotlock=1;
	\}
	-••
5	if (gotlock!=0)
6	unlock();
7	gotlock=0;
	\}
8	

