Ensuring Correctness of Hw/Sw Systems

- Uses logic to specify correctness properties, e.g.:
 - the program never crashes
 - the program always terminates
 - every request to the server is eventually answered
 - the output of the tree balancing function is a tree, provided the input is also a tree ...

- Given a logical specification, we can do either:
 - VERIFICATION: prove that a given system satisfies the specification
 - SYNTHESIS: build a system that satisfies the specification
Approaches to Verification

- **THEOREM PROVING**: reduce the verification problem to the satisfiability of a logical formula (entailment) and invoke an off-the-shelf theorem prover to solve the latter
 - Floyd-Hoare checking of pre-, post-conditions and invariants
 - Certification and Proof-Carrying Code

- **MODEL CHECKING**: enumerate the states of the system and check that the transition system satisfies the property
 - explicit-state model checking (SPIN)
 - symbolic model checking (SMV)

- **COMBINED METHODS**:
 - static analysis (ASTREE)
 - predicate abstraction (SLAM, BLAST)
Approaches to Synthesis

- **TREE AUTOMATA:**
 - starting point: logical specification
 - build word automaton from logic formula
 - transform into tree automaton
 - decide emptiness and build system from witness tree

- **CONTROL and GAME THEORY:**
 - starting point: incomplete/uncontrolled system with two types of freedom (system/environment choice) and an objective
 - the uncontrolled system is given as a game
 - controller/strategy tell how to achieve objective
Logic and Automata Connection

Given a logical formula φ, we build an automaton A_φ that recognizes the set of all structures (models) in which φ holds.

Assuming that A_φ belongs to a well-behaved class of automata, we can tackle the following problems:

- **SATISFIABILITY**: φ has a model if and only if A_φ is not empty
- **MODEL CHECKING**: a given structure is a model of φ if and only if it belongs to the language of A_φ
Overview

<table>
<thead>
<tr>
<th>Finite Words</th>
<th>First Order Logic</th>
<th>\subset</th>
<th>Monadic Second Order Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic Finite Automata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infinite Words</td>
<td>Linear Temporal Logic</td>
<td>Büchi Automata</td>
<td></td>
</tr>
<tr>
<td>Infinite Trees</td>
<td>Rabin Automata</td>
<td>Games</td>
<td>μ-calculus</td>
</tr>
</tbody>
</table>
Overview

Presburger Arithmetic $\subseteq \langle \mathbb{N}, +, V_p \rangle$

Semilinear Sets p-automata
Preliminaries
Words

An *alphabet* is a finite non-empty set of symbols $\Sigma = \{a, b, c, \ldots\}$.

A *word* of length n over Σ is a sequence $w = a_1a_2\ldots a_n$, where $a_i \in \Sigma$, for all $1 \leq i \leq n$. An *infinite word* is an infinite sequence of elements of Σ.

Equivalently, a word is a function $w : \{0, 1, \ldots, n - 1\} \to \Sigma$. The *length* n of the word w is denoted by $|w|$. The *empty word* is denoted by ϵ, i.e. $|\epsilon| = 0$.

Σ^* (Σ^ω) is the set of all finite (infinite) words over Σ.

The *concatenation* of two words w and u is denoted as wu. The *prefix* u of w is defined as $u \leq w$ iff there exists $v \in \Sigma^*$ such that $uv = w$.
Trees

A *prefix-closed* set $S \in \Sigma^*$ is a set such that for all $w \in S$ and $u \in \Sigma^*$, $u \leq w \Rightarrow u \in S$.

A *tree* over Σ is a partial function $t : \mathbb{N}^* \rightarrow \Sigma$ such that $\text{dom}(t)$ is a prefix-closed set.

A tree t is said to be *finite-branching* iff for all $p \in \text{dom}(t)$, the number of children of p is finite. A tree t is said to be *finite* if $\text{dom}(t)$ is finite.

Lemma 1 (König) A finitely branching tree is infinite if and only if it has an infinite path.
Ranked Trees

A *ranked alphabet* $\langle \Sigma, \# \rangle$ is a set of symbols together with a function $\# : \Sigma \rightarrow \mathbb{N}$. For $f \in \Sigma$, the value $\#(f)$ is said to be the *arity* of f.

A *ranked tree* t over Σ is a partial function $t : \mathbb{N}^* \rightarrow \Sigma$ that satisfies the following conditions:

- $\text{dom}(t)$ is a finite prefix-closed subset of \mathbb{N}^*, and
- for each $p \in \text{dom}(t)$, if $\#(t(p)) = n > 0$ then $\{i \mid pi \in \text{dom}(t)\} = \{1, \ldots, n\}$.

A symbol of arity zero is also called a *constant*. A finite tree over a ranked alphabet is also called a *term*.
First Order Logic
Syntax

The *alphabet* of FOL consists of the following symbols:

- **predicate symbols**: \(p_1, p_2, \ldots, = \)
- **function symbols**: \(f_1, f_2, \ldots \)
- **constant symbols**: \(c_1, c_2, \ldots \)
- **first-order variables**: \(x, y, z, \ldots \)
- **connectives**: \(\lor, \land, \rightarrow, \leftrightarrow, \neg, \bot, \forall, \exists \)
Syntax

The set of first-order terms is defined inductively:

- any constant symbol c is a term,
- any first-order variable x is a term,
- if t_1, t_2, \ldots, t_n are terms and f is a function symbol of arity $n > 0$, then $f(t_1, t_2, \ldots, t_n)$ is a term,
- nothing else is a term.

A term with no variable is said to be a ground term. An atomic proposition is any proposition of the form $p(t_1, \ldots, p_n)$ or $t_1 = t_2$, where t_1, t_2, \ldots, t_n are terms.
Syntax

The set of \textit{first-order formulae} is defined inductively:

- \bot and \top are formulae,

- p is a formula, if $\#(p) = 0$,

- if t_1, t_2, \ldots, t_n are terms and p is a predicate symbol of arity $n > 0$, then $p(t_1, t_2, \ldots, t_n)$ is a formula,

- if t_1, t_2 are terms, then $t_1 = t_2$ is a formula,

- if φ and ψ are formulae, then $\varphi \bullet \psi$, $\neg \varphi$, $\forall x . \varphi$ and $\exists x . \varphi$ are formulae, for $\bullet \in \{ \lor, \land, \to, \leftrightarrow \}$,

- nothing else is a formula.

The \textit{language} of logic FOL is the set of formulae, denoted as $\mathcal{L}(FOL)$.
FOL Formulae

\[x = y \]

\[\forall x \forall y . \ x = y \leftrightarrow y = x \]

\[\exists x (\forall y . p(x,y)) \rightarrow q(x) \]

\[\forall x . p(x) \rightarrow q(f(x)) \]

\[\forall x \exists y . \ f(x) = y \land (\forall z . \ f(z) = y \rightarrow z = x) \]
FOL Formulae

The *size* of a formula is the number of subformulae it contains, in other words, the number of nodes in the syntax tree representing the formula. The size of φ is denoted as $|\varphi|$.

The variables within the scope of a quantifier are said to be *bound*. The variables that are not bound are said to be *free*. We denote by $FV(\varphi)$ the set of free variables in φ. If $FV(\varphi) = \emptyset$ then φ is said to be a *sentence*.

Example 1
$FV(\forall x . x = y \land x = z \rightarrow p(x)) = \{y, z\}$

If $x \in FV(\varphi)$, we denote by $\varphi[t/x]$ the formula obtained from φ by substituting x with the term t.
Semantics

A *structure* is a tuple $m = \langle U, \overline{p}_1, \overline{p}_2, \ldots, \overline{f}_1, \overline{f}_2, \ldots \rangle$, where:

- U is a (possible infinite) set called the *universe*,
- $\overline{p}_i \subseteq U^{\#(p_i)}$, $i = 1, 2, \ldots$ are the *predicates*,
- $\overline{f}_i : U^{\#(f_i)} \rightarrow U$, $i = 1, 2, \ldots$ are the *functions*,

The elements of the universe are called *individuals*, denoted by $\overline{c}_1, \overline{c}_2, \ldots$.

NB: Every constant c has a corresponding individual \overline{c}, but not viceversa.
Semantics

Let $m = \langle U, \bar{p}_1, \bar{p}_2, \ldots, \bar{f}_1, \bar{f}_2, \ldots \rangle$ be a structure.

The interpretation of variables is a function:

$$m^* : \{x, y, z, \ldots \} \rightarrow U$$

The interpretation of a term t in a structure m is denoted as $t^m \in U$:

$$c^m = \bar{c} \in U$$

$$f(t_1, \ldots, t_n)^m = \bar{f}(t_1^m, \ldots, t_n^m)$$
Semantics

The meaning of a sentence φ in a structure m is denoted as $[\varphi]_m \in \{\text{true}, \text{false}\}$:

- $[\bot]_m = \text{false}$
- $[p(t_1, \ldots, t_n)]_m = \text{true}$ iff $\langle t_1^m, \ldots, t_n^m \rangle \in \bar{p}$
- $[t_1 = t_2]_m = \text{true}$ iff $t_1^m = t_2^m$
- $[\neg \varphi]_m = \text{true}$ iff $[\varphi]_m = \text{false}$
- $[\varphi \land \psi]_m = \text{true}$ iff $[\varphi]_m = [\psi]_m = \text{true}$
- $[\exists x . \varphi]_m = \text{true}$ iff $[\varphi[t/x]]_m = \text{true}$, for some term t, $FV(t) = \emptyset$
Semantics

Derived meanings:

\[
[\varphi \lor \psi]_m = [\neg (\varphi \land \psi)]_m
\]

\[
[\varphi \rightarrow \psi]_m = [\neg \varphi \lor \psi]_m
\]

\[
[\varphi \leftrightarrow \psi]_m = [(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)]_m
\]

\[
[\forall x . \varphi]_m = [\neg \exists x . \neg \varphi]_m
\]
Decision Problems

If $\llbracket \varphi \rrbracket_m = \text{true}$ we say that m is a \textit{model} of φ, denoted as $m \models \varphi$.

If $m \models \varphi$ for all structures m, we say that φ is \textit{valid}, denoted as $\models \varphi$.

If φ has at least one model, we say that it is \textit{satisfiable}.

\textbf{Satisfiability:} Given φ is it satisfiable?

\textbf{Model Checking:} Given m and φ, does $m \models \varphi$?
Examples

Let \(\leq \) be a binary predicate symbol, and \(m = \langle U, \leq \rangle \) be a structure. \(m \) is a partially ordered set if \(m \models \varphi_1 \land \varphi_2 \), where:

\[
\varphi_1 : \forall x \forall y . x \leq y \land y \leq x \leftrightarrow x = y
\]

\[
\varphi_2 : \forall x \forall y \forall z . x \leq y \land y \leq z \rightarrow x \leq z
\]

Notice that \(m \models \varphi_1 \rightarrow \forall x . x \leq x \).

\(m \) is a linearly ordered set if \(m \models \varphi_1 \land \varphi_2 \land \varphi_3 \), where:

\[
\varphi_3 : \forall x \forall y . x \leq y \lor y \leq x
\]
Exercises

Exercise 1 Two problems P and Q are equivalent when a method for solving P is also a method for solving Q, and viceversa. Show that satisfiability and validity of first-order sentences are equivalent problems. □

Exercise 2 Prove the validity of the following sentences:

\[
\forall x \forall y \forall z . \; x = y \land y = z \rightarrow x = z
\]
\[
(\exists x . \varphi \lor \psi) \leftrightarrow ((\exists x . \varphi) \lor (\exists x . \psi))
\]
\[
(\forall x . \varphi \land \psi) \leftrightarrow ((\forall x . \varphi) \land (\forall x . \psi))
\]
\[
(\exists x . \varphi \land \psi) \rightarrow ((\exists x . \varphi) \land (\exists x . \psi))
\]
\[
\neg(((\exists x . \varphi) \land (\exists x . \psi)) \rightarrow (\exists x . \varphi \land \psi))
\]
\[
((\forall x . \varphi) \lor (\forall x . \psi)) \rightarrow (\forall x . \varphi \lor \psi)
\]
\[
\neg((\forall x . \varphi \lor \psi) \rightarrow ((\forall x . \varphi) \lor (\forall x . \psi)))
\]
Normal Forms

A formula $\varphi \in \mathcal{L}(FOL)$ is said to be quantifier-free iff it contains no quantifiers.

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in negation normal form (NNF) iff the only subformulae appearing under negation are atomic propositions.

A formula $\varphi \in \mathcal{L}(FOL)$ is said to be in prenex normal form (PNF) iff

$$\varphi = Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \cdot \psi(x_1, x_2, \ldots, x_n)$$

where $Q_i \in \{\exists, \forall\}$ and ψ is a quantifier-free formula. Sometimes ψ is said to be the matrix of φ.
Normal Forms

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in **disjunctive normal form** (DNF) iff

$$\varphi = \bigvee_i \bigwedge_j \lambda_{ij}$$

where λ_{ij} are either atomic propositions or negations of atomic propositions.

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in **conjunctive normal form** (CNF) iff

$$\varphi = \bigwedge_i \bigvee_j \lambda_{ij}$$

where λ_{ij} are either atomic propositions or negations of atomic propositions.
FOL on Finite Words

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet and $w : \{0, 1, \ldots, n - 1\} \rightarrow \Sigma$ be a finite word, e.g. $w = a_0a_1 \ldots a_{n-1}$.

The structure corresponding to w is $m_w = \langle \text{dom}(w), \{\bar{p}_a\}_{a \in \Sigma}, \leq \rangle$, where:

- $\text{dom}(w) = \{0, 1, \ldots, n - 1\}$,
- $\bar{p}_a = \{x \in \text{dom}(w) \mid w(x) = a\}$,
- $x \leq y$ iff $x \leq y$.

$m_{abbaab} = \langle \{0, \ldots, 5\}, \bar{p}_a = \{0, 3, 4\}, \bar{p}_b = \{1, 2, 5\}, \leq \rangle$
Exercises

Exercise 3 Write a FOL formula $S(x, y)$ which is valid for all positions $x, y \in \mathbb{N}$ such that $y = x + 1$. □

Exercise 4 Write a FOL sentence whose models are all words with a on even positions and b on odd positions. Next, (try to) write a FOL sentence whose models are all words with a on even positions. □

Exercise 5 Write a FOL sentence whose models are all finite words. □
FOL on Infinite Words

Let \(w : \mathbb{N} \to \Sigma \) be an infinite word.

The structure corresponding to \(w \) is \(m_w = \langle \mathbb{N}, \{ \overline{p_a} \}_{a \in \Sigma}, \leq \rangle \).

We denote by \(\Sigma^\omega \) the set of all infinite words, and by \(\Sigma^\infty = \Sigma^* \cup \Sigma^\omega \).

\[
m_{(ab)} = \langle \mathbb{N}, \overline{p_a} = \{2k \mid k \in \mathbb{N}\}, \overline{p_b} = \{2k + 1 \mid k \in \mathbb{N}\}, \leq \rangle
\]
FOL on Finite Trees

Let $\Sigma = \{f, g, \ldots\}$ be an alphabet and $t : \mathbb{N}^* \rightarrow \Sigma$ be a finite tree over Σ.

The structure corresponding to t is $m_t = \langle \text{dom}(t), \{\bar{p}_f\}_{f \in \Sigma}, \preceq, \{s_n\}_{n \in \mathbb{N}} \rangle$, where:

- $\bar{p}_f = \{p \in \text{dom}(t) \mid t(p) = f\}$,
- \preceq is the prefix order on \mathbb{N}^*,
- $s_n(p) = pn$ for any $n \in \mathbb{N}$, is the n-th successor function.

$m_{f(f(g,g),g)} = \langle \{\epsilon, 0, 1, 00, 01\}, \bar{p}_f = \{\epsilon, 0\}, \bar{p}_g = \{00, 01, 1\}, \preceq, \{s_n\}_{n \in \mathbb{N}} \rangle$.

Exercise

Exercise 6 A red-black tree is a tree in which all nodes are either red or black, such that the root is black, and each red node has only black children. Write a FOL sentence whose models are all red-black trees. □
FOL on Infinite Trees

Let \(t : \mathbb{N}^* \rightarrow \Sigma \) be an infinite tree over \(\Sigma \).

The structure corresponding to \(t \) is \(m_t = \langle \mathbb{N}^*, \{\bar{p}_f\}_{f \in \Sigma}, \bar{\leq}, \{s_n\}_{n \in \mathbb{N}} \rangle \).

The lexicographic order on \(\mathbb{N}^* \) is defined as follows:

\[
x \leq y : \ x \leq y \lor \exists z . \ s_0(z) \leq x \land s_1(z) \leq y
\]
Monadic Second Order Logic

Syntax

The alphabet of MSOL consists of:

- all first-order symbols

- *set variables*: X, Y, Z, \ldots

The set of MSOL terms consists of all first-order terms and set variables. The set of MSOL formulae consists of:

- all first-order formulae, i.e. $L(FOL) \subseteq L(MSOL)$,

- if t is a term and X is a set variable, then $X(t)$ is a formula,

- if φ and ψ are formulae, then $\varphi \bullet \psi$, $\neg \varphi$, $\forall x . \varphi$, $\exists x . \varphi$, $\forall X . \varphi$ and $\exists X . \varphi$ are formulae, for $\bullet \in \{\lor, \land, \to, \leftrightarrow\}$.

$X(t)$ is sometimes written $t \in X$.
Examples

\[\exists X \forall x . X(x) \]
\[\forall x . X(x) \rightarrow Y(x) \]
\[\forall Y . ((\forall . Y(x) \rightarrow X(x)) \land \exists x . X(x) \land \neg Y(x)) \rightarrow \forall x . \neg Y(x) \]
Semantics

Let $m = \langle U, p_1, p_2, \ldots, f_1, f_2, \ldots \rangle$ be a structure.

The interpretation of set variables is a function:

$$m : \{X, Y, Z, \ldots \} \rightarrow 2^U$$

Example 2 The following MSOL formula characterizes all partitions $\langle X, Y \rangle$ of Z:

$$\text{partition}(X, Y, Z) : (\forall x \forall y . X(x) \land Y(y) \rightarrow \neg x = y) \land (\forall x . Z(x) \leftrightarrow X(x) \lor Y(x))$$

\square
Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet. The alphabet of the sequential calculus is composed of:

- the function symbol s denotes the successor,
- the set constants $\{p_a \mid a \in \Sigma\}$; p_a denotes the set of positions of a
- the first and second order variables and connectives.

(W)eak indicates that quantification is over finite sets only.

Q: Let $m_{abbaab} = \langle\{0, \ldots, 5\}, \overline{p}_a = \{0, 3, 4\}, \overline{p}_b = \{1, 2, 5\}, \preceq\rangle$ be a finite word. How much is $s(5)$?
Examples

The order $x \leq y$ on positions is defined as:

- $\text{closed}(X) : \forall x . X(x) \rightarrow X(s(x))$

- $x \leq y : \forall X . X(x) \land \text{closed}(X) \rightarrow X(y)$

Q: Given \leq how do you define s?

The formula $\text{len}(x) : \forall y . y \leq x$ defines the length of a finite word and is unsatisfiable on infinite words.

The set of positions of a word is defined by $\text{pos}(X) : \forall x . X(x)$.
Examples

The set of even positions is defined by

\[
even(X) : \exists Y, Z . \ pos(Z) \land partition(X, Y, Z) \land \\
\forall x, y . X(x) \land s(x) = y \rightarrow Y(y) \land \\
\forall x, y . Y(x) \land s(x) = y \rightarrow Y(x)
\]

The set of all words having a’s on even positions is the set of models of the sentence:

\[
\exists X . even(X) \land \forall x . X(x) \rightarrow p_a(x)
\]
Exercise 7 Write a S1S formula whose models are exactly all infinite words starting with an even number of 0’s followed by an infinite number of 1’s. □
MSOL on Trees: (W)SωS

Let $\Sigma = \{a, b, \ldots\}$ be a tree alphabet. The alphabet of (W)SωS is:

- the function symbols $\{s_i \mid i \in \mathbb{N}\}$; $s_i(x)$ denotes the i-th successor of x
- the set constants $\{p_a \mid a \in \Sigma\}$; p_a denotes the set of positions of a
- the first and second order variables and connectives.

In FOL on trees we had \leq (prefix) instead of s_i. Why?
Examples

Let us consider binary trees, i.e. the alphabet of S2S.

- The formula $\text{closed}(X) : \forall x . X(x) \rightarrow X(s_0(x)) \land X(s_1(x))$ denotes the fact that X is a **downward-closed** set.

- The **prefix ordering** on tree positions is defined by $x \leq y : \forall X . \text{closed}(X) \land X(x) \rightarrow X(y)$.

- The **root** of a tree is defined by $\text{root}(x) : \forall y . x \leq y$.
Exercise

Exercise 8 Define the set of binary trees $t : \{0, 1\}^* \rightarrow \{a, b\}$ such that $t(p) = a$ if p is of even length and $t(p) = b$ if p is of odd length. □

Exercise 9 Write a \mathcal{L}_ω formula $\text{path}(X)$ that defines the set of all paths in a binary tree. □

Exercise 10 Write a \mathcal{L}_ω sentence whose models are all finite trees. □