
Notions of Automata Theory

Automata on Finite Words

A non-deterministic finite automaton (NFA) over Σ is a tuple

A = 〈S, I, T, F 〉 where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ × S is a transition relation,

• F ⊆ S is a set of final states.

We denote T (s, α) = {s′ ∈ S | (s, α, s′) ∈ T}. When T is clear from the

context we denote (s, α, s′) ∈ T by s
α
−→ s′.

Determinism and Completeness

Definition 1 An automaton A = 〈S, I, T, F 〉 is deterministic (DFA) iff

||I|| = 1 and, for each s ∈ S and for each α ∈ Σ, ||T (s, α)|| ≤ 1.

If A is deterministic we write T (s, α) = s′ instead of T (s, α) = {s′}.

Definition 2 An automaton A = 〈S, I, T, F 〉 is complete iff for each

s ∈ S and for each α ∈ Σ, ||T (s, α)|| ≥ 1.

Runs and Acceptance Conditions

Given a finite word w ∈ Σ∗, w = α1α2 . . . αn, a run of A over w is a finite

sequence of states s1, s2, . . . , sn, sn+1 such that s1 ∈ I and si
αi−→ si+1 for

all 1 ≤ i ≤ n.

A run over w between si and sj is denoted as si
w
−→ sj .

The run is said to be accepting iff sn+1 ∈ F . If A has an accepting run

over w, then we say that A accepts w.

The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S ⊆ Σ∗ is recognizable if there exists an automaton A such

that S = L(A).

Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.

Determinization

Theorem 1 For every NFA A there exists a DFA Ad such that

L(A) = L(Ad).

Let Ad = 〈2S , {I}, Td, {G ⊆ S | G ∩ F 6= ∅}〉, where

(S1, α, S2) ∈ Td ⇐⇒ S2 = {s′ | ∃s ∈ S1 . (s, α, s′) ∈ T}

This definition is known as subset construction

On the Exponential Blowup of Complementation

Theorem 2 For every n ∈ N, n ≥ 1, there exists an automaton A, with

size(A) = n+ 1 such that no deterministic automaton with less than 2n

states recognizes the complement of L(A).

Let Σ = {a, b} and L = {uav | u, v ∈ Σ∗, |v| = n− 1}.

There exists a NFA with exactly n+ 1 states which recognizes L.

Suppose that B = 〈S, {s0}, T, F 〉, is a (complete) DFA with ||S|| < 2n that

accepts Σ∗ \ L.

On the Exponential Blowup of Complementation

||{w ∈ Σ∗ | |w| = n}|| = 2n and ||S|| < 2n (by the pigeonhole principle)

⇒ ∃uav1, ubv2 . |uav1| = |ubv2| = n and s ∈ S . s0
uav1−−−→ s and s0

ubv2−−−→ s

Let s1 be the (unique) state of B such that s
u
−→ s1.

Since |uav1| = n, then uav1u ∈ L⇒ uav1u 6∈ L(B), i.e. s is not accepting.

On the other hand, ubv2u 6∈ L⇒ ubv2u ∈ L(B), i.e. s is accepting,

contradiction.

Completion

Lemma 1 For every NFA A there exists a complete NFA Ac such that

L(A) = L(Ac).

Let Ac = 〈S ∪ {σ}, I, Tc, F 〉, where σ 6∈ S is a new sink state. The

transition relation Tc is defined as:

∀s ∈ S∀α ∈ Σ . (s, α, σ) ∈ Tc ⇐⇒ ∀s′ ∈ S . (s, α, s′) 6∈ T

and ∀α ∈ Σ . (σ, α, σ) ∈ Tc.

Closure Properties

Theorem 3 Let A1 = 〈S1, I1, T1, F1〉 and A2 = 〈S2, I2, T2, F2〉 be two

NFA. There exists automata Ā1, A∪ and A∩ that recognize the languages

Σ∗ \ L(A1), L(A1) ∪ L(A2), and L(A1) ∩ L(A2) respectivelly.

Let A′ = 〈S′, I ′, T ′, F ′〉 be the complete deterministic automaton such

that L(A1) = L(A′), and Ā1 = 〈S′, I ′, T ′, S′ \ F ′〉.

Let A∪ = 〈S1 ∪ S2, I1 ∪ I2, T1 ∪ T2, F1 ∪ F2〉.

Let A∩ = 〈S1 × S2, I1 × I2, T∩, F1 × F2〉 where:

(〈s1, t1〉, α, 〈s2, t2〉) ∈ T∩ ⇐⇒ (s1, α, s2) ∈ T1 and (t1, α, t2) ∈ T2

Decidability

Given automata A and B:

• Membership Given w ∈ Σ∗, w ∈ L(A) ?

• Emptiness L(A) = ∅ ?

• Equality L(A) = L(B) ?

• Infinity ||L(A)|| <∞ ?

• Universality L(A) = Σ∗ ?

Theorem 4 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.

Automata on Infinite Words

Definition of Büchi Automata

Let Σ = {a, b, . . .} be a finite alphabet.

A non-deterministic Büchi automaton (NBA) over Σ is a tuple

A = 〈S, I, T, F 〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ × S is a transition relation,

• F ⊆ S is a set of final states.

Acceptance Condition

A run of a Büchi automaton is defined over an infinite word w : α1α2 . . .

as an infinite sequence of states π : s0s1s2 . . . such that:

• s0 ∈ I and

• (si, αi+1, si+1) ∈ T , for all i ∈ N.

inf(π) = {s | s appears infinitely often on π}

Run π of A is said to be accepting iff inf(π) ∩ F 6= ∅.

The language of A, denoted L(A), is the set of all words accepted by A.

A language L ⊆ Σω is recognizable (or, equivalently rational) if there exists

a Büchi automaton A such that L = L(A).

Examples

Let Σ = {0, 1}. Define Büchi automata for the following languages:

1. L = {α ∈ Σω | 0 occurs in α exactly once}

2. L = {α ∈ Σω | after each 0 in α there is 1}

3. L = {α ∈ Σω | α contains finitely many 1’s}

4. L = (01)∗Σω

5. L = {α ∈ Σω | 0 occurs on all even positions in α}

Closure Properties

Closure under union is like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex

result.

Deterministic BA are not closed under complement

Closure under Intersection

Let A1 = 〈S1, I1, T1, F1〉 and A2 = 〈S2, I2, T2, F2〉

Build A∩ = 〈S, I, T, F 〉:

• S = S1 × S2 × {1, 2, 3},

• I = I1 × I2 × {1},

• the definition of T is the following:

– ((s1, s
′
1, 1), a, (s2, s

′
2, 1)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s1 6∈ F1

– ((s1, s
′
1, 1), a, (s2, s

′
2, 2)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s1 ∈ F1

– ((s1, s
′
1, 2), a, (s2, s

′
2, 2)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s′1 6∈ F2

– ((s1, s
′
1, 2), a, (s2, s

′
2, 3)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s′1 ∈ F2

– ((s1, s
′
1, 3), a, (s2, s

′
2, 1)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2

• F = S1 × S2 × {3}

The Emptiness Problem

Theorem 5 Given a Büchi automaton A, L(A) 6= ∅ iff there exist

u, v ∈ Σ∗, |u|, |v| ≤ ||A||, such that uvω ∈ L(A).

In practical terms, A is non-empty iff there exists a state s which is

reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Büchi automata?

Deterministic Büchi Automata

ω-languages recognized by NBA ⊃ ω-languages recognized by DBA

Q: Why classical subset construction does not work for Büchi automata?

Let A = 〈S, I, T, F 〉 and Ad = 〈2S , {I}, Td, {Q | Q ∩ F 6= ∅}〉.

Let u0u1u2 . . . ∈ L(A) be an infinite word. In Ad this gives:

I
u0−→ Q1

u1−→ Q2
u2−→ . . .

where each Qi ∩ F . However this does not necessarily correspond to an

accepting path in A!

Deterministic Büchi Automata

Let W ⊆ Σ∗. Define
−→
W = {α ∈ Σω | α(0, n) ∈W for infinitely many n}

Theorem 6 A language L ⊆ Σω is recognizable by a deterministic Büchi

automaton iff there exists a rational language W ⊆ Σ∗ such that L =
−→
W .

If L = L(A) then W = L(A′) where A′ is the DFA with the same

definition as A, and with the finite acceptance condition.

Deterministic Büchi Automata

Theorem 7 There exists a Büchi recognizable language that can be

recognized by no deterministic Büchi automaton.

Σ = {a, b} and L = {α ∈ Σω | #a(α) <∞} = Σ∗bω.

Suppose L =
−→
W for some W ⊆ Σ∗.

bω ∈ L⇒ bn1 ∈W

bn1abω ∈ L⇒ bn1abn2 ∈W

. . .

bn1abn2a . . . ∈
−→
W = L, contradiction.

Deterministic BA are not closed under complement

Theorem 8 There exists a DBA A such that no DBA recognizes the

language Σω \ L(A).

Σ = {a, b} and L = {α ∈ Σω | #a(α) <∞} = Σ∗bω.

Let V = Σ∗a. There exists a DFA A such that L(A) = V .

There exists a deterministic Büchi automaton B such that L(A) =
−→
V

But Σω \
−→
V = L which cannot be recognized by any DBA.

Complementation of non-deterministic BA

• Languages recognized by non-deterministic BA are closed under

complement

• Original proof by Büchi using Ramsey Theorem

• Optimal 2O(n log n) complexity by Safra Algorithm

• Lower bound of n!

LTL Model Checking

System verification using LTL

• Let K be a model of a reactive system (finite computations can be

turned into infinite ones by repeating the last state infinitely often)

• Given an LTL formula ϕ over a set of atomic propositions P ,

specifying all bad behaviors, we build a Büchi automaton Aϕ that

accepts all sequences over 2P satisfying ϕ.

• Check whether L(Aϕ) ∩ L(K) = ∅. In case it is not, we obtain a

counterexample.

• Alternatively, if ϕ specifies all good behaviors, we check

L(A¬ϕ) ∩ L(K) = ∅.

Generalized Büchi Automata

Let Σ = {a, b, . . .} be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is A = 〈S, I, T,F〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ × S is a transition relation,

• F = {F1, . . . , Fk} ⊆ 2S is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all 1 ≤ i ≤ k, we have

inf(π) ∩ Fi 6= ∅

GBA and BA are equivalent

Let A = 〈S, I, T,F〉, where F = {F1, . . . , Fk}.

Build A′ = 〈S′, I ′, T ′, F ′〉:

• S′ = S × {1, . . . , k},

• I ′ = I × {1},

• (〈s, i〉, a, 〈t, j〉) ∈ T ′ iff (s, t) ∈ T and:

– j = i if s 6∈ Fi,

– j = (i mod k) + 1 if s ∈ Fi.

• F ′ = F1 × {1}.

The idea of the construction

Let K = 〈S, s0,→, L〉 be a Kripke structure over a set of atomic

propositions P , π : N → S be an infinite path through K, and ϕ be an

LTL formula.

To determine whether K,π |= ϕ, we label π with sets of subformulae of ϕ

in a way that is compatible with LTL semantics.

Then K,π |= ϕ if such a labeling exists

Negation Normal Form

• Negation occurs only on atomic propositions

¬(ϕUψ) = ¬ϕR¬ψ

¬(ϕRψ) = ¬ϕU¬ψ

¬2ϕ = 3¬ϕ

¬3ϕ = 2¬ϕ

• Example

¬2p ∨ 3(¬(aUb ∧ 2c)) = 3¬p ∨ 3(¬aR¬b ∨ 3¬c)

Closure

Let ϕ be an LTL formula written in negation normal form.

The closure of ϕ is the set Cl(ϕ) ∈ 2L(LTL):

• ϕ ∈ Cl(ϕ)

• ©ψ ∈ Cl(ϕ) ⇒ ψ ∈ Cl(ϕ)

• ψ1 • ψ2 ∈ Cl(ϕ) ⇒ ψ1, ψ2 ∈ Cl(ϕ), for all • ∈ {∧,∨,U ,R}.

Example 1 Cl(3p) = Cl(⊤Up) = {3p, p,⊤}2

Q: What is the size of the closure relative to the size of ϕ ?

Labeling rules

Given a path π : N → 2P in a Kripke structure K = 〈S, s0,−→, L〉 and ϕ,

we define the labeling τ : N → 2Cl(ϕ) as follows:

• for p ∈ P, if p ∈ τ(i) then p ∈ π(i), and if ¬p ∈ τ(i) then p 6∈ π(i)

• if ψ1 ∧ ψ2 ∈ τ(i) then ψ1 ∈ τ(i) and ψ2 ∈ τ(i)

• if ψ1 ∨ ψ2 ∈ τ(i) then ψ1 ∈ τ(i) or ψ2 ∈ τ(i)

Labeling rules

ϕUψ ⇐⇒ ψ ∨ (ϕ ∧©(ϕUψ))

ϕRψ ⇐⇒ ψ ∧ (ϕ ∨©(ϕRψ))

• if ©ψ ∈ τ(i) then ψ ∈ τ(i+ 1)

• if ψ1Uψ2 ∈ τ(i) then either ψ2 ∈ τ(i), or ψ1 ∈ τ(i) and

ψ1Uψ2 ∈ τ(i+ 1)

• if ψ1Rψ2 ∈ τ(i) then ψ2 ∈ τ(i) and either ψ1 ∈ τ(i) or

ψ1Rψ2 ∈ τ(i+ 1)

Interpreting labelings

A sequence π satisfies a formula ϕ if one can find a labeling τ satisfying:

• the labeling rules above

• ϕ ∈ τ(0), and

• if ψ1Uψ2 ∈ τ(i), then for some j ≥ i, ψ2 ∈ τ(j) (the eventuality

condition)

Example

π : p p p . . .

q q

τ : pUq pUq pUq pUq . . .

p p p q

©(pUq) ©(pUq) ©(pUq)

Building the GBA Aϕ = 〈S, I, T,F〉

The automaton Aϕ is the set of labeling rules + the eventuality

condition(s) !

• Σ = 2P is the alphabet

• S ⊆ 2Cl(ϕ), such that, for all s ∈ S :

– ϕ1 ∧ ϕ2 ∈ s⇒ ϕ1 ∈ s and ϕ2 ∈ s

– ϕ1 ∨ ϕ2 ∈ s⇒ ϕ1 ∈ s or ϕ2 ∈ s

• I = {s ∈ S | ϕ ∈ s},

• (s, α, t) ∈ T iff:

– for all p ∈ P, p ∈ s⇒ p ∈ α, and ¬p ∈ s⇒ p 6∈ α,

– ©ψ ∈ s⇒ ψ ∈ t,

– ψ1Uψ2 ∈ s⇒ ψ2 ∈ s or [ψ1 ∈ s and ψ1Uψ2 ∈ t]

– ψ1Rψ2 ∈ s⇒ ψ2 ∈ s and [ψ1 ∈ s or ψ1Rψ2 ∈ t]

Building the GBA Aϕ = 〈S, I, T,F〉

• for each eventuality φUψ ∈ Cl(ϕ), the transition relation ensures that

this will appear until the first occurrence of ψ

• it is sufficient to ensure that, for each φUψ ∈ Cl(ϕ), one goes

infinitely often either through a state in which this does not appear,

or through a state in which both φUψ and ψ appear

• let φ1Uψ1, . . . φnUψn be the “until” subformulae of ϕ

F = {F1, . . . , Fn}, where:

Fi = {s ∈ S | φiUψi ∈ s and ψi ∈ s or φiUψi 6∈ s}

for all 1 ≤ i ≤ n.

Conclusion of the second part

• Model checking is a push-button verification technique

• The main limitation is the size of the system’s model

• Practical for hardware systems: boolean variables, finite-state models

• Difficult for software systems: integers, pointers, recursive data

structures

• There are several methods to fight state explosion:

– finite-state systems: partial-order reductions, symmetry reductions

– infinite-state systems: symbolic representations (automata,logic),

abstract interpretation, compositional techniques

• Verification in industry:

– hardware: Cadence, Synopsis, IBM, Intel, ...

– software: AbsInt, GrammaTech, Coverity, Polyspace, Monoidics, ...

