Notions of Automata Theory

Automata on Finite Words

A non-deterministic finite automaton (NFA) over Σ is a tuple $A=\langle S, I, T, F\rangle$ where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F \subseteq S$ is a set of final states.

We denote $T(s, \alpha)=\left\{s^{\prime} \in S \mid\left(s, \alpha, s^{\prime}\right) \in T\right\}$. When T is clear from the context we denote $\left(s, \alpha, s^{\prime}\right) \in T$ by $s \xrightarrow{\alpha} s^{\prime}$.

Determinism and Completeness

Definition 1 An automaton $A=\langle S, I, T, F\rangle$ is deterministic (DFA) iff $\|I\|=1$ and, for each $s \in S$ and for each $\alpha \in \Sigma,\|T(s, \alpha)\| \leq 1$.

If A is deterministic we write $T(s, \alpha)=s^{\prime}$ instead of $T(s, \alpha)=\left\{s^{\prime}\right\}$.

Definition 2 An automaton $A=\langle S, I, T, F\rangle$ is complete iff for each $s \in S$ and for each $\alpha \in \Sigma,\|T(s, \alpha)\| \geq 1$.

Runs and Acceptance Conditions

Given a finite word $w \in \Sigma^{*}, w=\alpha_{1} \alpha_{2} \ldots \alpha_{n}$, a run of A over w is a finite sequence of states $s_{1}, s_{2}, \ldots, s_{n}, s_{n+1}$ such that $s_{1} \in I$ and $s_{i} \xrightarrow{\alpha_{i}} s_{i+1}$ for all $1 \leq i \leq n$.

A run over w between s_{i} and s_{j} is denoted as $s_{i} \xrightarrow{w} s_{j}$.

The run is said to be accepting iff $s_{n+1} \in F$. If A has an accepting run over w, then we say that A accepts w.

The language of A, denoted $\mathcal{L}(A)$ is the set of all words accepted by A.

A set of words $S \subseteq \Sigma^{*}$ is recognizable if there exists an automaton A such that $S=\mathcal{L}(A)$.

Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each input word.

Proposition 2 If A is complete, then it has at least one run for each input word.

Determinization

Theorem 1 For every NFA A there exists a DFA A_{d} such that $\mathcal{L}(A)=\mathcal{L}\left(A_{d}\right)$.

Let $A_{d}=\left\langle 2^{S},\{I\}, T_{d},\{G \subseteq S \mid G \cap F \neq \emptyset\}\right\rangle$, where

$$
\left(S_{1}, \alpha, S_{2}\right) \in T_{d} \Longleftrightarrow S_{2}=\left\{s^{\prime} \mid \exists s \in S_{1} .\left(s, \alpha, s^{\prime}\right) \in T\right\}
$$

This definition is known as subset construction

On the Exponential Blowup of Complementation

Theorem 2 For every $n \in \mathbb{N}, n \geq 1$, there exists an automaton A, with $\operatorname{size}(A)=n+1$ such that no deterministic automaton with less than 2^{n} states recognizes the complement of $\mathcal{L}(A)$.

Let $\Sigma=\{a, b\}$ and $L=\left\{u a v\left|u, v \in \Sigma^{*},|v|=n-1\right\}\right.$.

There exists a NFA with exactly $n+1$ states which recognizes L.

Suppose that $B=\left\langle S,\left\{s_{0}\right\}, T, F\right\rangle$, is a (complete) DFA with $\|S\|<2^{n}$ that accepts $\Sigma^{*} \backslash L$.

On the Exponential Blowup of Complementation

$\left\|\left\{w \in \Sigma^{*}| | w \mid=n\right\}\right\|=2^{n}$ and $\|S\|<2^{n}$ (by the pigeonhole principle)
$\Rightarrow \exists u a v_{1}, u b v_{2} \cdot\left|u a v_{1}\right|=\left|u b v_{2}\right|=n$ and $s \in S \cdot s_{0} \xrightarrow{u a v_{1}} s$ and $s_{0} \xrightarrow{u b v_{2}} s$

Let s_{1} be the (unique) state of B such that $s \xrightarrow{u} s_{1}$.

Since $\left|u a v_{1}\right|=n$, then $u a v_{1} u \in L \Rightarrow u a v_{1} u \notin \mathcal{L}(B)$, i.e. s is not accepting.

On the other hand, $u b v_{2} u \notin L \Rightarrow u b v_{2} u \in \mathcal{L}(B)$, i.e. s is accepting, contradiction.

Completion

Lemma 1 For every NFA A there exists a complete NFA A_{c} such that $\mathcal{L}(A)=\mathcal{L}\left(A_{c}\right)$.

Let $A_{c}=\left\langle S \cup\{\sigma\}, I, T_{c}, F\right\rangle$, where $\sigma \notin S$ is a new sink state. The transition relation T_{c} is defined as:

$$
\forall s \in S \forall \alpha \in \Sigma .(s, \alpha, \sigma) \in T_{c} \Longleftrightarrow \forall s^{\prime} \in S .\left(s, \alpha, s^{\prime}\right) \notin T
$$

and $\forall \alpha \in \Sigma .(\sigma, \alpha, \sigma) \in T_{c}$.

Closure Properties

Theorem 3 Let $A_{1}=\left\langle S_{1}, I_{1}, T_{1}, F_{1}\right\rangle$ and $A_{2}=\left\langle S_{2}, I_{2}, T_{2}, F_{2}\right\rangle$ be two NFA. There exists automata \bar{A}_{1}, A_{\cup} and A_{\cap} that recognize the languages $\Sigma^{*} \backslash \mathcal{L}\left(A_{1}\right), \mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$, and $\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$ respectivelly.

Let $A^{\prime}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right\rangle$ be the complete deterministic automaton such that $\mathcal{L}\left(A_{1}\right)=\mathcal{L}\left(A^{\prime}\right)$, and $\bar{A}_{1}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, S^{\prime} \backslash F^{\prime}\right\rangle$.

Let $A_{\cup}=\left\langle S_{1} \cup S_{2}, I_{1} \cup I_{2}, T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle$.

Let $A_{\cap}=\left\langle S_{1} \times S_{2}, I_{1} \times I_{2}, T_{\cap}, F_{1} \times F_{2}\right\rangle$ where:

$$
\left(\left\langle s_{1}, t_{1}\right\rangle, \alpha,\left\langle s_{2}, t_{2}\right\rangle\right) \in T_{\cap} \Longleftrightarrow\left(s_{1}, \alpha, s_{2}\right) \in T_{1} \text { and }\left(t_{1}, \alpha, t_{2}\right) \in T_{2}
$$

Decidability

Given automata A and B :

- Membership Given $w \in \Sigma^{*}, w \in \mathcal{L}(A)$?
- Emptiness $\mathcal{L}(A)=\emptyset$?
- Equality $\mathcal{L}(A)=\mathcal{L}(B)$?
- Infinity $\|\mathcal{L}(A)\|<\infty$?
- Universality $\mathcal{L}(A)=\Sigma^{*}$?

Theorem 4 The emptiness, equality, infinity and universality problems are decidable for automata on finite words.

Automata on Infinite Words

Definition of Büchi Automata

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

A non-deterministic Büchi automaton (NBA) over Σ is a tuple $A=\langle S, I, T, F\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F \subseteq S$ is a set of final states.

Acceptance Condition

A run of a Büchi automaton is defined over an infinite word $w: \alpha_{1} \alpha_{2} \ldots$ as an infinite sequence of states $\pi: s_{0} s_{1} s_{2} \ldots$ such that:

- $s_{0} \in I$ and
- $\left(s_{i}, \alpha_{i+1}, s_{i+1}\right) \in T$, for all $i \in \mathbb{N}$.

$$
\inf (\pi)=\{s \mid s \text { appears infinitely often on } \pi\}
$$

Run π of A is said to be accepting $\operatorname{iff} \inf (\pi) \cap F \neq \emptyset$.

The language of A, denoted $\mathcal{L}(A)$, is the set of all words accepted by A.

A language $L \subseteq \Sigma^{\omega}$ is recognizable (or, equivalently rational) if there exists a Büchi automaton A such that $L=\mathcal{L}(A)$.

Examples

Let $\Sigma=\{0,1\}$. Define Büchi automata for the following languages:

1. $L=\left\{\alpha \in \Sigma^{\omega} \mid 0\right.$ occurs in α exactly once $\}$
2. $L=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ after each 0 in α there is 1$\}$
3. $L=\left\{\alpha \in \Sigma^{\omega} \mid \alpha\right.$ contains finitely many 1's $\}$
4. $L=(01)^{*} \Sigma^{\omega}$
5. $L=\left\{\alpha \in \Sigma^{\omega} \mid 0\right.$ occurs on all even positions in $\left.\alpha\right\}$

Closure Properties

Closure under union is like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex result.

Deterministic BA are not closed under complement

Closure under Intersection

Let $A_{1}=\left\langle S_{1}, I_{1}, T_{1}, F_{1}\right\rangle$ and $A_{2}=\left\langle S_{2}, I_{2}, T_{2}, F_{2}\right\rangle$

Build $A_{\cap}=\langle S, I, T, F\rangle$:

- $S=S_{1} \times S_{2} \times\{1,2,3\}$,
- $I=I_{1} \times I_{2} \times\{1\}$,
- the definition of T is the following:

$$
\begin{aligned}
& -\left(\left(s_{1}, s_{1}^{\prime}, 1\right), a,\left(s_{2}, s_{2}^{\prime}, 1\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1} \notin F_{1} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 1\right), a,\left(s_{2}, s_{2}^{\prime}, 2\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1} \in F_{1} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 2\right), a,\left(s_{2}, s_{2}^{\prime}, 2\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1}^{\prime} \notin F_{2}^{\prime} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 2\right), a,\left(s_{2}, s_{2}^{\prime}, 3\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2 \text { and } s_{1}^{\prime} \in F_{2} \\
& -\left(\left(s_{1}, s_{1}^{\prime}, 3\right), a,\left(s_{2}, s_{2}^{\prime}, 1\right)\right) \in T \text { iff }\left(s_{i}, a, s_{i}^{\prime}\right) \in T_{i}, i=1,2
\end{aligned}
$$

- $F=S_{1} \times S_{2} \times\{3\}$

The Emptiness Problem

Theorem 5 Given a Büchi automaton $A, \mathcal{L}(A) \neq \emptyset$ iff there exist $u, v \in \Sigma^{*},|u|,|v| \leq\|A\|$, such that $u v^{\omega} \in \mathcal{L}(A)$.

In practical terms, A is non-empty iff there exists a state s which is reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Büchi automata?

Deterministic Büchi Automata

ω-languages recognized by NBA $\supset \omega$-languages recognized by DBA

Q: Why classical subset construction does not work for Büchi automata?

Let $A=\langle S, I, T, F\rangle$ and $A_{d}=\left\langle 2^{S},\{I\}, T_{d},\{Q \mid Q \cap F \neq \emptyset\}\right\rangle$.

Let $u_{0} u_{1} u_{2} \ldots \in \mathcal{L}(A)$ be an infinite word. In A_{d} this gives:

$$
I \xrightarrow{u_{0}} Q_{1} \xrightarrow{u_{1}} Q_{2} \xrightarrow{u_{2}} \ldots
$$

where each $Q_{i} \cap F$. However this does not necessarily correspond to an accepting path in A !

Deterministic Büchi Automata

Let $W \subseteq \Sigma^{*}$. Define $\vec{W}=\left\{\alpha \in \Sigma^{\omega} \mid \alpha(0, n) \in W\right.$ for infinitely many $\left.n\right\}$

Theorem 6 A language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there exists a rational language $W \subseteq \Sigma^{*}$ such that $L=\vec{W}$.

If $L=\mathcal{L}(A)$ then $W=\mathcal{L}\left(A^{\prime}\right)$ where A^{\prime} is the DFA with the same definition as A, and with the finite acceptance condition.

Deterministic Büchi Automata

Theorem 7 There exists a Büchi recognizable language that can be recognized by no deterministic Büchi automaton.
$\Sigma=\{a, b\}$ and $L=\left\{\alpha \in \Sigma^{\omega} \mid \#_{a}(\alpha)<\infty\right\}=\Sigma^{*} b^{\omega}$.

Suppose $L=\vec{W}$ for some $W \subseteq \Sigma^{*}$.
$b^{\omega} \in L \Rightarrow b^{n_{1}} \in W$
$b^{n_{1}} a b^{\omega} \in L \Rightarrow b^{n_{1}} a b^{n_{2}} \in W$
$b^{n_{1}} a b^{n_{2}} a \ldots \in \vec{W}=L$, contradiction.

Deterministic BA are not closed under complement

Theorem 8 There exists a DBA A such that no DBA recognizes the language $\Sigma^{\omega} \backslash \mathcal{L}(A)$.
$\Sigma=\{a, b\}$ and $L=\left\{\alpha \in \Sigma^{\omega} \mid \#_{a}(\alpha)<\infty\right\}=\Sigma^{*} b^{\omega}$.

Let $V=\Sigma^{*} a$. There exists a DFA A such that $\mathcal{L}(A)=V$.

There exists a deterministic Büchi automaton B such that $\mathcal{L}(A)=\vec{V}$

But $\Sigma^{\omega} \backslash \vec{V}=L$ which cannot be recognized by any DBA.

Complementation of non-deterministic BA

- Languages recognized by non-deterministic BA are closed under complement
- Original proof by Büchi using Ramsey Theorem
- Optimal $2^{O(n \log n)}$ complexity by Safra Algorithm
- Lower bound of n !

LTL Model Checking

System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often)
- Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_{φ} that accepts all sequences over $2^{\mathcal{P}}$ satisfying φ.
- Check whether $\mathcal{L}\left(A_{\varphi}\right) \cap \mathcal{L}(K)=\emptyset$. In case it is not, we obtain a counterexample.
- Alternatively, if φ specifies all good behaviors, we check $\mathcal{L}\left(A_{\neg \varphi}\right) \cap \mathcal{L}(K)=\emptyset$.

Generalized Büchi Automata

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A=\langle S, I, T, \mathcal{F}\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\} \subseteq 2^{S}$ is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all $1 \leq i \leq k$, we have

$$
\inf (\pi) \cap F_{i} \neq \emptyset
$$

GBA and BA are equivalent

Let $A=\langle S, I, T, \mathcal{F}\rangle$, where $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$.

Build $A^{\prime}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right\rangle$:

- $S^{\prime}=S \times\{1, \ldots, k\}$,
- $I^{\prime}=I \times\{1\}$,
- $(\langle s, i\rangle, a,\langle t, j\rangle) \in T^{\prime}$ iff $(s, t) \in T$ and:
$-j=i$ if $s \notin F_{i}$,
$-j=(i \bmod k)+1$ if $s \in F_{i}$.
- $F^{\prime}=F_{1} \times\{1\}$.

The idea of the construction

Let $K=\left\langle S, s_{0}, \rightarrow, L\right\rangle$ be a Kripke structure over a set of atomic propositions $\mathcal{P}, \pi: \mathbb{N} \rightarrow S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.

Then $K, \pi \models \varphi$ if such a labeling exists

Negation Normal Form

- Negation occurs only on atomic propositions

$$
\begin{aligned}
\neg(\varphi \mathcal{U} \psi) & =\neg \varphi \mathcal{R} \neg \psi \\
\neg(\varphi \mathcal{R} \psi) & =\neg \varphi \mathcal{U} \neg \psi \\
\neg \square \varphi & =\diamond \neg \varphi \\
\neg \diamond \varphi & =\square \neg \varphi
\end{aligned}
$$

- Example

$$
\neg \square p \vee \diamond(\neg(a \mathcal{U} b \wedge \square c))=\diamond \neg p \vee \diamond(\neg a \mathcal{R} \neg b \vee \diamond \neg c)
$$

Closure

Let φ be an LTL formula written in negation normal form.

The closure of φ is the set $C l(\varphi) \in 2^{\mathcal{L}(L T L)}$:

- $\varphi \in C l(\varphi)$
- $\bigcirc \psi \in C l(\varphi) \Rightarrow \psi \in C l(\varphi)$
- $\psi_{1} \bullet \psi_{2} \in C l(\varphi) \Rightarrow \psi_{1}, \psi_{2} \in C l(\varphi)$, for all $\bullet \in\{\wedge, \vee, \mathcal{U}, \mathcal{R}\}$.

Example $1 C l(\diamond p)=C l(T \mathcal{U} p)=\{\diamond p, p, \top\} \square$

Q: What is the size of the closure relative to the size of φ ?

Labeling rules

Given a path $\pi: \mathbb{N} \rightarrow 2^{\mathcal{P}}$ in a Kripke structure $K=\left\langle S, s_{0}, \rightarrow, L\right\rangle$ and φ, we define the labeling $\tau: \mathbb{N} \rightarrow 2^{C l(\varphi)}$ as follows:

- for $p \in \mathcal{P}$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$
- if $\psi_{1} \wedge \psi_{2} \in \tau(i)$ then $\psi_{1} \in \tau(i)$ and $\psi_{2} \in \tau(i)$
- if $\psi_{1} \vee \psi_{2} \in \tau(i)$ then $\psi_{1} \in \tau(i)$ or $\psi_{2} \in \tau(i)$

Labeling rules

$$
\begin{aligned}
\varphi \mathcal{U} \psi & \Longleftrightarrow \psi \vee(\varphi \wedge \bigcirc(\varphi \mathcal{U} \psi)) \\
\varphi \mathcal{R} \psi & \Longleftrightarrow \psi \wedge(\varphi \vee \bigcirc(\varphi \mathcal{R} \psi))
\end{aligned}
$$

- if $\bigcirc \psi \in \tau(i)$ then $\psi \in \tau(i+1)$
- if $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i)$ then either $\psi_{2} \in \tau(i)$, or $\psi_{1} \in \tau(i)$ and $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i+1)$
- if $\psi_{1} \mathcal{R} \psi_{2} \in \tau(i)$ then $\psi_{2} \in \tau(i)$ and either $\psi_{1} \in \tau(i)$ or $\psi_{1} \mathcal{R} \psi_{2} \in \tau(i+1)$

Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above
- $\varphi \in \tau(0)$, and
- if $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i)$, then for some $j \geq i, \psi_{2} \in \tau(j)$ (the eventuality condition)

$\pi:$	p	p	p		\cdots
				q	q
$\tau:$	$p \mathcal{U} q$	$p \mathcal{U} q$	$p \mathcal{U} q$	$p \mathcal{U} q$	\cdots
	p	p	p	q	
	$\bigcirc(p \mathcal{U} q)$	$\bigcirc(p \mathcal{U} q)$	$\bigcirc(p \mathcal{U} q)$		

$\underline{\text { Building the GBA } A_{\varphi}=\langle S, I, T, \mathcal{F}\rangle}$
The automaton A_{φ} is the set of labeling rules + the eventuality condition(s)!

- $\Sigma=2^{\mathcal{P}}$ is the alphabet
- $S \subseteq 2^{C l(\varphi)}$, such that, for all $s \in S$:
$-\varphi_{1} \wedge \varphi_{2} \in s \Rightarrow \varphi_{1} \in s$ and $\varphi_{2} \in s$
$-\varphi_{1} \vee \varphi_{2} \in s \Rightarrow \varphi_{1} \in s$ or $\varphi_{2} \in s$
- $I=\{s \in S \mid \varphi \in s\}$,
- $(s, \alpha, t) \in T$ iff:
- for all $p \in \mathcal{P}, p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,
$-\bigcirc \psi \in s \Rightarrow \psi \in t$,
$-\psi_{1} \mathcal{U} \psi_{2} \in s \Rightarrow \psi_{2} \in s$ or $\left[\psi_{1} \in s\right.$ and $\left.\psi_{1} \mathcal{U} \psi_{2} \in t\right]$
$-\psi_{1} \mathcal{R} \psi_{2} \in s \Rightarrow \psi_{2} \in s$ and $\left[\psi_{1} \in s\right.$ or $\left.\psi_{1} \mathcal{R} \psi_{2} \in t\right]$
$\underline{\text { Building the GBA } A_{\varphi}=\langle S, I, T, \mathcal{F}\rangle}$
- for each eventuality $\phi \mathcal{U} \psi \in C l(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ
- it is sufficient to ensure that, for each $\phi \mathcal{U} \psi \in C l(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi \mathcal{U} \psi$ and ψ appear
- let $\phi_{1} \mathcal{U} \psi_{1}, \ldots \phi_{n} \mathcal{U} \psi_{n}$ be the "until" subformulae of φ
$\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$, where:

$$
F_{i}=\left\{s \in S \mid \phi_{i} \mathcal{U} \psi_{i} \in s \text { and } \psi_{i} \in s \text { or } \phi_{i} \mathcal{U} \psi_{i} \notin s\right\}
$$

for all $1 \leq i \leq n$.

Conclusion of the second part

- Model checking is a push-button verification technique
- The main limitation is the size of the system's model
- Practical for hardware systems: boolean variables, finite-state models
- Difficult for software systems: integers, pointers, recursive data structures
- There are several methods to fight state explosion:
- finite-state systems: partial-order reductions, symmetry reductions
- infinite-state systems: symbolic representations (automata,logic), abstract interpretation, compositional techniques
- Verification in industry:
- hardware: Cadence, Synopsis, IBM, Intel, ...
- software: AbsInt, GrammaTech, Coverity, Polyspace, Monoidics, ...

