
Verification by abstraction and specialisation of
constraint logic programs

John Gallagher12

1Roskilde University 2IMDEA Software Institute, Madrid

Rich Model Toolkit COST Action Meeting
Malta

Acknowledgements
EU FP7 ENTRA Project

Danish Natural Science Council NUSA Project

John Gallagher CLP analysis for verification 1/45

Map of the Talk

M[P0]

DLY

majority

i1

i2

o

d

o

LINEAR HYBRID
AUTOMATA

IMPERATIVE
PROGRAMS

HARDWARE

CONSTRAINT
LOGIC

PROGRAM
P0

P1

+ Petri nets,
assembly code,
bytecode,
functional programs,
O-O languages,
Z, B,
logic programs,
…

P2

CLP interpreter
+

partial
evaluation

Pn

SOURCE TRANSFORM
to CLP

COMPUTE APPROXIMATE
MODELS

M[P1]

Mq[P2]

Mq[Pn]

TRANSFORM
CLP PROGRAM

?- q.

John Gallagher CLP analysis for verification 2/45

From Semantics to CLP

M[P0]

DLY

majority

i1

i2

o

d

o

LINEAR HYBRID
AUTOMATA

IMPERATIVE
PROGRAMS

HARDWARE

CONSTRAINT
LOGIC

PROGRAM
P0

P1

+ Petri nets,
assembly code,
bytecode,
functional programs,
O-O languages,
Z, B,
logic programs,
…

P2

CLP interpreter
+

partial
evaluation

Pn

SOURCE TRANSFORM
to CLP

COMPUTE APPROXIMATE
MODELS

M[P1]

Mq[P2]

Mq[Pn]

TRANSFORM
CLP PROGRAM

?- q.

John Gallagher CLP analysis for verification 3/45

From Semantics to CLP interpreters

Judgement

α1, . . . , αn

α
where b

CLP
α :- α1, . . . , αn,b.

Note that the definitions of αi ,b can be “programmed" in CLP
(cf. Manuel’s talk).

John Gallagher CLP analysis for verification 4/45

From Semantics to CLP interpreters: example

Current work: modelling the semantics of XC.
Judgement

〈S1σ〉
L→ 〈S′1σ′〉

〈(S1 ‖ S2)σ〉 L→ 〈(S′1 ‖ S2)σ′〉

Coq representation
ex_par_1_step : forall s1 s1’ s2 st st’ l r,

exec s1 st l s1’ st’ r
-> exec (PAR s1 s2) st l (PAR s1’ s2) st’ r

CLP representation
% ex_par_1_step

exec(par(S1, S2), St, L, par(S11, S2), St1,R) :-
exec(S1, St, L, S11, St1,R).

John Gallagher CLP analysis for verification 5/45

CLP interpreters: defining a run

Multi-step computation

〈skip σ〉 →∗ 〈skip σ〉

〈S0 σ0〉
ε→ 〈S1 σ1〉 〈S1 σ1〉 →∗ 〈S2 σ2〉
〈S0 σ0〉 →∗ 〈S2 σ2〉

CLP

run(skip,St,skip,St,0).
run(S,St,S2,St2,R) :-

exec(S,St,emptyl,S1,St1,R1),
run(S1,St1,S2,St2,R2),

John Gallagher CLP analysis for verification 6/45

Partial evaluation

Experiments with offline partial evaluator LOGEN (M.
Leuschel)
The CLP interpreter is annotated to indicate

which calls are unfolded
a “filter" for each argument controlling generalisation and
removal of static structures

Essentially, everything is unfolded except
the recursive calls to “run"
the computations on dynamic values

Program’s syntactic structure is removed

John Gallagher CLP analysis for verification 7/45

Partial Evaluation: example

Example. XC program semantics instrumented with resource
usage (e.g. energy) as final argument.

John Gallagher CLP analysis for verification 8/45

Structure filtering

“Flattening" transformation – removes redundant structure and
retains only the dynamic values.
This is important to enable analysis of the partially evaluated
program.

/*
runeval(stm(let(n,cns(nat(C)),let(m,cns(nat(D)),seq(ifnz(var(n),
seq(seq(asg(m,mul(var(n),var(m))),asg(n,sub(var(n),cns(nat(E))))),
while(var(n),seq(asg(m,mul(var(n),var(m))),
asg(n,sub(var(n),cns(nat(F))))))),skip),ret(var(m)))))),[],A,[],B) :-
runeval__3(A,F,C,D,E,B). */

runeval__3(A,F,C,D,E,B) :-
runeval__4(A,F,C,D,C,E,G), B is 1+G.

John Gallagher CLP analysis for verification 9/45

Transition systems: CLP program encoding reachable
states

transition(X,X’) ← c1(X,X’).
transition(X,X’) ← c2(X,X’).
· · · ← · · ·
initState(X) ← cinit (X).
reach(X) ← initState(X).
reach(X’) ← reach(X), transition(X,X’).

The transition relation for a given system can be unfolded in the
reach clauses.
ci(X ,X ′) are constraints over some domain.

John Gallagher CLP analysis for verification 10/45

Generating assertions from semantics

Judgement
σ 6|= p

〈assert p σ〉 → 〈error〉
initState〈S St〉 〈S σ〉 →∗ 〈error〉

false
CLP representation

exec(assert(P),St, error) :- ¬P.
false :- init(S,St), exec(S,St,error).

John Gallagher CLP analysis for verification 11/45

Example: A task scheduler [Halbwachs et al. 94]

John Gallagher CLP analysis for verification 12/45

Example Transition for Scheduler

Sample transition of Scheduler.

transition((J, L, N, P, R, S, G),(A, B, C, D, E, F, 0)) :-
G<H,
1*I=1*J+1*(H-G),
1*K=1*L+1*(H-G),
1*M=1*N+0*(H-G),
1*O=1*P+0*(H-G),
1*Q=1*R+0*(H-G),
1*_=1*S+0*(H-G),
K>=20, A=I, B=0,
C=M, D=O, E=Q,
F=1.

John Gallagher CLP analysis for verification 13/45

Semantics for termination

Binary clause semantics (Codish et al., 1999, derived from
a more general “resolvent" semantics for logic programs).
Binary clauses can be derived from a CLP meta-program
by partial evaluation (Gallagher, LOPSTR’03)

bin(rev([X|Xs],Zs),Q) :-
bin(rev(Xs,Ys),Q).

bin(rev([X|Xs],Zs),Q) :-
rev(Xs,Ys), bin(app(Ys,[X],Zs),Q).

bin(app([X|Xs],Ys,[X|Zs]),Q) :-
bin(app(Xs,Ys,Zs),Q).

bin(rev(X,Y),rev(X,Y)) :- true.
bin(app(X,Y,Z),app(X,Y,Z)) :- true.

John Gallagher CLP analysis for verification 14/45

Good partial evaluations

To be useful for analysis, the partially evaluated CLP program
should:

be of the same size order as the original program,
predicates correspond (more or less) to program points
remove all the source program syntax.

Is this always possible?

John Gallagher CLP analysis for verification 15/45

Big-step vs. small-step semantics

The form of the semantic judgements determines the form of
the CLP program.

Big-step semantics generally makes it easier to obtain a
“good" partial evaluation.
Small-step semantics produces programs that are
“transition systems" and are “easier to analyse"; but . . .
For recursive programs, small-step semantics requires a
stack to be represented explicitly in the CLP program
For big-step semantics, the stack is implicit in the CLP
semantics.
Compound data structures, heap, etc. need careful
consideration in order to get an analysable CLP program.

John Gallagher CLP analysis for verification 16/45

Big-step vs. small-step semantics - cont’d

big-step
proc :-
stmt1,
stmt2,
. . .
stmtn.

small-step
proc :-
stmt1.

stm1 :-
stmt2.
. . .

stmtn-1 :-
stmtn.

stmtn :-
. . .

John Gallagher CLP analysis for verification 17/45

Semantics to CLP - Summary

CLP programs (should be) derived systematically from
semantics:

CLP representation of semantic judgements (e.g.
operational semantics, proof rules)
Semantics possibly instrumented or enhanced with traces,
etc.
Partially evaluate semantics wrt a fixed program to get a
CLP program
Filter out the syntactic structures from the interpreter,
leaving a CLP program over the domain of the program

John Gallagher CLP analysis for verification 18/45

Computing (approximate) models of CLP programs

M[P0]

DLY

majority

i1

i2

o

d

o

LINEAR HYBRID
AUTOMATA

IMPERATIVE
PROGRAMS

HARDWARE

CONSTRAINT
LOGIC

PROGRAM
P0

P1

+ Petri nets,
assembly code,
bytecode,
functional programs,
O-O languages,
Z, B,
logic programs,
…

P2

CLP interpreter
+

partial
evaluation

Pn

SOURCE TRANSFORM
to CLP

COMPUTE APPROXIMATE
MODELS

M[P1]

Mq[P2]

Mq[Pn]

TRANSFORM
CLP PROGRAM

?- q.

John Gallagher CLP analysis for verification 19/45

CLP model semantics

Here we focus on the model semantics (in contrast to the proof
semantics). A model is a set of constrained facts.
The “immediate consequence" operator for a CLP program (a
generalisation of the standard TP function).

T CP (I) =


A← C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A← B1, . . . ,Bn,D ∈ P
{A1 ← C1, . . . ,An ← Cn} ∈ I
∃ θ such that
mgu((B1, . . . ,Bn), (A1, . . . ,An)) = θ
C′ =

⋃
i=1,...,n

{Ciθ} ∪ D

SAT(C′)
C = projVar(A)(C′)


MC[[P]] = lfp(T CP)

John Gallagher CLP analysis for verification 20/45

Checking program properties

The minimal model is equivalent to the set of derivable
facts of the program.
So we can check whether P |= A either

by checking whether A ∈ M[[P]]
or, by running A as a query to P (using a complete proof
rule such as tabling (cf. Manuel’s talk).

Other semantics (e.g. greatest fixpoints) are also relevant
to other problems (see later in talk).

John Gallagher CLP analysis for verification 21/45

Computing Fixpoints

The minimal model is computed as the least fixed point of
the immediate consequences function T CP .
This is the limit of the Kleene sequence
∅,T CP (∅),T CP (T CP (∅)),
In general this is not a finite sequence – hence
approximation is required.

either in the model computation (bottom-up) or in the
computation (top-down).

John Gallagher CLP analysis for verification 22/45

Proofs by Approximation

The core of verification using static analysis is proof by
approximation.
Over-approximation gives us sufficient conditions for proving
universal formulas over some infinite set.

S' ⊇ S

S

∀x. x ∈ S' implies ∀x. x ∈ S

cf. Manuel’s talk and references for a full account of verification
by analysis.

John Gallagher CLP analysis for verification 23/45

Abstract interpretation of fixpoint semantics

Abstract interpretation of CLP in one picture.

CONCRETE DOMAIN
∅

S α

γ

ABSTRACT DOMAIN

Galois
connection

Tω(∅) = lfp(T)

T(∅)

T2(∅)

T3(∅)

⊥

S(⊥)

S2(⊥)

S3(⊥)

Sk(⊥) = lfp(S)

Safety condition: T ��γ ⊆ γ � S

John Gallagher CLP analysis for verification 24/45

Constraint domains - property-based abstractions

A property-based abstraction is an abstract interpretation.

CONCRETE DOMAIN =Power(S)

S (infinite set of states) A (finite set of properties (subsets of S))

X Y

∅

S

⊆

α(X) = {U,W}

A

∅

⊇

α

γ

ABSTRACT DOMAIN = Power(A)

Galois
connection

X

Y
U

V

W

X'

X'

g({U,W}) = X'

John Gallagher CLP analysis for verification 25/45

Tree automata abstractions

A proof of safety can be found by approximating the infinite
model of this program by a tree automaton (regular type
inference, cf. Manuel’s talk).

John Gallagher CLP analysis for verification 26/45

Abstraction by Intervals, polyhedra, · · ·

Example.
applen(X,Y,Z) :- X=0, Y=Z, Y>=0.
applen(X,Y,Z) :- applen(X1,Y,Z1), X = X1+1, Z = Z1+1.
revlen(X,Y) :- X=0,Y=0.
revlen(X,Y) :- revlen(X1,Z),applen(Z,U,Y),X=X1+1, U=1.
false :- revlen(X,Y), X>Y.
false :- revlen(X,Y), X<Y.
Approximation by convex hulls gives:
applen(X,Y,Z) :- X+Y=Z.
revlen(X,Y) :- X=Y

Note that widenings are used in these abstract domains, since
they are not of finite height.

John Gallagher CLP analysis for verification 27/45

Summary - computing approximate models

Abstract interpretation provides a systematic framework for
generating sound approximations of the models of CLP
programs.
A great variety of useful abstract domains has been
developed.
Abstraction can be combined with refinement heuristics to
improve the precision of abstractions.
Generic optimisation of fixpoint computation has been
studied (program SCCs, worklists, semi-naive
evaluations,...).

John Gallagher CLP analysis for verification 28/45

Proof by CLP transformation

M[P0]

DLY

majority

i1

i2

o

d

o

LINEAR HYBRID
AUTOMATA

IMPERATIVE
PROGRAMS

HARDWARE

CONSTRAINT
LOGIC

PROGRAM
P0

P1

+ Petri nets,
assembly code,
bytecode,
functional programs,
O-O languages,
Z, B,
logic programs,
…

P2

CLP interpreter
+

partial
evaluation

Pn

SOURCE TRANSFORM
to CLP

COMPUTE APPROXIMATE
MODELS

M[P1]

Mq[P2]

Mq[Pn]

TRANSFORM
CLP PROGRAM

?- q.

John Gallagher CLP analysis for verification 29/45

Proof by CLP transformation (overall idea)

Given a CLP program P0, say we wish to show that some atom
A is not a consequence.

P0 P1 P2 Pk.

Pk contains no
clause with head A

Suppose we wish to prove that A is a consequence.

P0 P1 P2 Pk.

Pk contains a
clause A :- true

Transformation rules preserve the model (wrt to some specified
predicates).

John Gallagher CLP analysis for verification 30/45

The MAP system (Pettorossi, Proietti et al.)

The MAP system is an automatic program transformation
system that automatically proves properties of CLP
programs.
Compares favourably with ARMC, HSF(C) and TRACER
(see De Angelis et al. PEPM 2013)

Abstraction techniques related to abstract interpretation are
used during the transformations.

John Gallagher CLP analysis for verification 31/45

The PRO-B system (Leuschel)

The Pro-B system is an automatic program specialisation
system that automatically proves properties of CLP
programs.
It is now being commercialised.
The main proof technique is program specialisation - again
aiming to make program properties explicit.

John Gallagher CLP analysis for verification 32/45

Query-answer transformations

A generalisation of “magic set" transformations for Datalog
For each predicate p, define two predicates pans and pquery .
Given a program P and query Q, derive a program PQ.
P |= Q iff PQ |= Qans.

Query-answer transformation allows computation tree
semantics to be simulated by model semantics. (The pquery
predicates represent calls in the computation tree).

John Gallagher CLP analysis for verification 33/45

Proof for transformation - Summary

Model-preserving transformations are applied
Proof is obtained when the required property becomes
explicit in the transformed program.
Specialisation wrt a query is a very useful form of
transformation – achieved by query-answer transforms, or
by various specialisation algorithms.

John Gallagher CLP analysis for verification 34/45

Final topic: Abstract model checking of CLP transition
programs

We start with a CLP representation of a transition system.
Each transition is a clause of form
transition(X ,X ′) : −c(X ,X ′), also represented as

X̄
c(X̄ ,X̄ ′)−→ X̄ ′.

c(X ,X ′) is a constraint over some constraint domain.

John Gallagher CLP analysis for verification 35/45

pre and p̃re functions

From a transition relation, compute functions pre : 2S → 2S,
p̃re : 2S → 2S.

S

pre(S)

pre~(S)

pre(Z): the set of possible predecessors of set of states Z .
p̃re(Z): the set of definite predecessors of set of states Z .

John Gallagher CLP analysis for verification 36/45

pre and p̃re expressed using constraint operations

A constraint c(X̄) stands for the set of states satisfying c(X̄).

pre(c′(ȳ)) =
∨
{∃ȳ(c′(ȳ) ∧ c(x̄ , ȳ)) | x̄ c(x̄ ,ȳ)−→ ȳ is a transition}

p̃re(c′(ȳ)) = ¬(pre(¬c′(ȳ)))

We assume that the constraint solver has a projection
(∃-elimination) operation and is closed under boolean
operations.

John Gallagher CLP analysis for verification 37/45

Checking CTL properties

Define a function [[φ]] returning the set of states where φ holds.
Compositional definition:

[[p]] = states(p)
[[EFφ]] = lfp.λZ .([[φ]] ∪ pre(Z))
[[AGφ]] = gfp.λZ .([[φ]] ∩ p̃re(Z))
· · ·

where states(p) is the set of states where proposition p holds
(i.e. a constraint).
Model checking φ:

1 Evaluate [[φ]].
2 Check that I ⊆ [[φ]], where I is the set of initial states.

Equivalently, check that I ∩ [[¬φ]] = ∅.

John Gallagher CLP analysis for verification 38/45

Galois connection for partition abstraction

CONCRETE DOMAIN

S (infinite set of states) A (finite partition of S)

X Y

∅

S

⊆

∅

A

⊆

α

γ

ABSTRACT DOMAIN

Galois
connection

X

Y

U

U

V

V

John Gallagher CLP analysis for verification 39/45

Galois connection implemented using constraint
operations

Assume that the elements of the partition are given by
constraints. Let cd be the constraint defining the partition
element d .

α(c) = {d ∈ A | SAT(cd ∧ c)}
γ(V) =

∨
{cd | d ∈ V}

SAT can be implemented by an SMT solver. We used
Yices (http://yices.csl.sri.com/) interfaced to Prolog.

John Gallagher CLP analysis for verification 40/45

Abstraction of functions

Given a function
f : 2S → 2S

on the concrete domain, the most precise approximation of f in
the abstract domain is

α ◦ f ◦ γ : 2A → 2A.

John Gallagher CLP analysis for verification 41/45

Abstract checking of CTL properties

Applying this construction to the function [[.]], obtain a function
[[φ]]a.

[[p]]a = (α ◦ states)(p)
[[EFφ]]a = lfp.λZ .([[φ]]a ∪ (α ◦ pre ◦ γ)(Z))
[[AGφ]]a = gfp.λZ .([[φ]]a ∩ (α ◦ p̃re ◦ γ)(Z))
· · ·

Computation of [[φ]]a terminates. It can be shown that for all φ,

[[φ]] ⊆ γ([[φ]]a)

.
Abstract Model Checking of φ

1 Compute [[¬φ]]a.
2 Check that I ∩ γ([[¬φ]]a) = ∅.
3 This implies that I ∩ [[¬φ]] = ∅, since γ([[¬φ]]a) ⊇ [[¬φ]].

John Gallagher CLP analysis for verification 42/45

Some Experiments on Linear Hybrid Automata

Arbitrary CTL formulas can be checked (not just A-formulas as
in standard abstract model checking).

System Property A ∆ secs.
Water AF (W ≥ 10) 5 4 0.02
Monitor AG(0 ≤W ∧W ≤ 12) 5 4 0.01

AF (AG(1 ≤W ∧W ≤ 12)) 5 4 0.02
AG(W = 10→ AF (W < 10 ∨W > 10)) 10 4 0.05
AG(AG(AG(AG(AG(0 ≤W ∧W ≤ 12))))) 5 4 0.02
EF (W = 10) 10 4 0.01
EU(W < 12,AU(W < 12,W ≥ 12)) 7 4 0.04

Task EF (K 2 = 1) 18 12 0.53
Sched. AG(K 2 > 0→ AF (K 2 = 0)) 18 12 0.30

AG(K 2 ≤ 1) 18 12 0.04

John Gallagher CLP analysis for verification 43/45

CLP-based verification: Some directions

Systematic generation of CLP program from semantics
Refinement techniques for arbitrary abstract domains (not
just predicate abstractions)
Widening in predicate refinement
Representation and abstraction of memory, heap, stack,
etc.
Program transformation vs. abstraction - understand the
connections better.

John Gallagher CLP analysis for verification 44/45

THE END

John Gallagher CLP analysis for verification 45/45

