Mean-payoff games with incomplete information

Paul Hunter, Guillermo Pérez, Jean-François Raskin

Université Libre de Bruxelles
COST Meeting @ Madrid

October, 2013
Outline

1 MPG variations
 - Mean-payoff games
 - Imperfect information

2 Tackling MPGs with imperfect information
 - Incomplete information
 - Observable determinacy
 - Decidable subclasses
 - Pure games with incomplete information

3 Conclusions
MPGs imperfect information: example

- The game involves nodes 1, 2, 3, and 4 with edges connecting them.

- The game's objective is to move a token to win by maximizing the average weight of the edges traversed.

- Example: Player ve chooses node a, while player dam chooses edge (1, a, 2) with a payoff of -1.
MPGs imperfect information: example

\[\Sigma = \{a, b\} \]

and weights on the edges

Game to move token: \(\exists ve \) chooses \(\sigma \) and \(\forall dam \) chooses edge to win (\(\exists ve \)): maximize average weight of edges traversed

Example: \(\exists ve \) chooses \(a \), \(\forall dam \) chooses \((1, a, 2) \); payoff = -1

\[
\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 1 \\
3 & 3 & 2 \\
4 & 4 & 3
\end{array}
\]

P. Hunter, G. Pérez, J.F. Raskin (ULB)
MPGs imperfect information: example

- \(\Sigma = \{a, b\} \) and weights on the edges

![Diagram]

- \(\Sigma, -1 \)
- \(a, -1 \) from 1 to 2
- \(b, -1 \) from 2 to 4
- \(b, -1 \) from 3 to 1
- \(a, -1 \) from 4 to 3
- \(\Sigma, +1 \)

Example: \(\exists \) ve chooses \(a \), \(\forall \) dam chooses \((1, a, 2) \); payoff = -1
MPGs imperfect information: example

- $\Sigma = \{a, b\}$ and weights on the edges

Game
- to move token: \existsve chooses σ and \foralldam chooses edge
- to win (\existsve): maximize average weight of edges traversed

```
\[\begin{array}{c}
\text{Node 1} \quad \text{Node 2} \quad \text{Node 3} \quad \text{Node 4} \\
\Sigma, -1 \quad a, -1 \quad b, -1 \quad \Sigma, +1 \\
\Sigma, -1 \quad \Sigma, -1 \quad a, -1 \quad \Sigma, +1 \\
\end{array}\]
```
MPGs imperfect information: example

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: \existsve chooses σ and \foralldam chooses edge
 - to win (\existsve): maximize average weight of edges traversed
- Example: \existsve chooses a, \foralldam chooses $(1, a, 2)$; payoff = -1
MPGs imperfect information: example

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: \existsve chooses σ and \foralldam chooses edge
 - to win (\existsve): maximize average weight of edges traversed
- Example: \existsve chooses a, \foralldam chooses $(1, a, 2)$; payoff = -1

![Graph]

Σ, -1

Σ, +1

1

3

4

Σ, -1

Σ, -1

Σ, -1
MPGs imperfect information: example

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: $\exists v e$ chooses σ and $\forall d a m$ chooses edge
 - to win ($\exists v e$): maximize average weight of edges traversed

![Graph Diagram]
MPGs imperfect information: example

- $\Sigma = \{a, b\}$ and weights on the edges
- Game
 - to move token: \existsve chooses σ and \foralldam chooses edge
 - to win (\existsve): maximize average weight of edges traversed
- \existsve only sees colors, \foralldam sees everything

```
\begin{itemize}
  \item $\Sigma = \{a, b\}$ and weights on the edges
  \item Game
    \begin{itemize}
      \item to move token: $\exists$ve chooses $\sigma$ and $\forall$dam chooses edge
      \item to win ( $\exists$ve ): maximize average weight of edges traversed
    \end{itemize}
  \item $\exists$ve only sees colors, $\forall$dam sees everything
\end{itemize}
```
Mean-payoff game

Definition (MPGs)

- **Mean-payoff games** are 2-player games of infinite duration played on (directed) weighted graphs. **∃ve** chooses an action, and **∀dam** resolves non-determinism by choosing the next state.

- **∃ve** wants to maximize the average weight of the edges traversed (the **MP value**).

- **∀dam** wants to minimize the same value.
Definition (Strategies for $\exists v_e$)

An observable strategy for $\exists v_e$ is a function from finite sequences $(Obs \cdot \Sigma)^* Obs$ to the next action.
Definition (Strategies for \existsve)

An observable strategy for \existsve is a function from finite sequences $(\text{Obs} \cdot \Sigma)^* \text{Obs}$ to the next action.

Definition (MP value)

Given the transition relation Δ and the weight function $w : \Delta \to \mathbb{Z}$ of a MPG, the MP value is $\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} w(q_i, \sigma_i, q_{i+1})$.
Strategies, Mean-payoff value

Definition (Strategies for \existsve)
An observable strategy for \existsve is a function from finite sequences $(Obs \cdot \Sigma)^* Obs$ to the next action.

Definition (MP value)
Given the transition relation Δ and the weight function $w : \Delta \rightarrow \mathbb{Z}$ of a MPG, the MP value is $\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} w(q_i, \sigma_i, q_{i+1})$.

Problem (Winner of a MPG)
Given a threshold $\nu \in \mathbb{N}$, the MPG is won by \existsve iff $MP \geq \nu$. W.l.o.g assume $\nu = 0$.
Theorem (Ehrenfeucht and Mycielski [1979])

- **MPGs are determined**, i.e. if $\exists \text{eve}$ doesn’t have a winning strategy then $\forall \text{dam}$ does (and vice versa).

- **Positional strategies suffice for either $\forall \text{dam}$ or $\exists \text{eve}$ to win a MPG.**
Theorem (Ehrenfeucht and Mycielski [1979])

- **MPGs are determined**, i.e. if \existsve doesn’t have a winning strategy then \foralldam does (and vice versa).
- **Positional strategies suffice for either \foralldam or \existsve to win a MPG.**

$\Sigma = \{a, b\}$

![Diagram](image-url)
Theorem (Ehrenfeucht and Mycielski [1979])

- **MPGs are determined**, i.e. if $\exists ve$ doesn’t have a winning strategy then $\forall dam$ does (and vice versa).
- Positional strategies suffice for either $\forall dam$ or $\exists ve$ to win a MPG.

$\Sigma = \{a, b\}$ $\exists ve$ has a winning strat: play b in 2 and a in 3
Outline

1. **MPG variations**
 - Mean-payoff games
 - Imperfect information

2. **Tackling MPGs with imperfect information**
 - Incomplete information
 - Observable determinacy
 - Decidable subclasses
 - Pure games with incomplete information

3. **Conclusions**
Definition (MPGs with imperfect info.)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).
A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

\[\Sigma = \{a, b\} \]
Definition (MPGs with imperfect info.)

A MPG with imperfect information is played on a weighted graph given with a coloring of the state space that defines equivalence classes of indistinguishable states (observations).

\[\Sigma = \{ a, b \} \]

Neither \(\exists \text{eve} \) nor \(\forall \text{dam} \) have a winning strategy anymore.
Motivation and properties

Why consider such a model?

- MPGs are natural models for systems where we want to optimize the limit-average usage of a resource.
- Imperfect information arises from the fact that most systems have a limited amount of sensors and input data.
Motivation and properties

Why consider such a model?
- MPGs are natural models for systems where we want to optimize the limit-average usage of a resource.
- Imperfect information arises from the fact that most systems have a limited amount of sensors and input data.

Theorem (Degorre et al. [2010])
- **MPGs with imperfect info. are no longer “determined”**.
- **∃Eve learns about the game by using memory.**
- **Determining who wins is undecidable.**
- **May require infinite memory to be won by ∃Eve.**
1. MPG variations
 - Mean-payoff games
 - Imperfect information

2. Tackling MPG with imperfect information
 - Incomplete information
 - Observable determinacy
 - Decidable subclasses
 - Pure games with incomplete information

3. Conclusions
Don’t lie to Eve

Definition

A game of imperfect information is of **incomplete information** if for every \((q, \sigma, q') \in \Delta\), then for every \(s'\) in the same observation as \(q'\) there is a transition \((s, \sigma, s') \in \Delta\) where \(s\) is in the same observation as \(q\).
Definition

A game of imperfect information is of incomplete information if for every \((q, \sigma, q') \in \Delta\), then for every \(s'\) in the same observation as \(q'\) there is a transition \((s, \sigma, s') \in \Delta\) where \(s\) is in the same observation as \(q\).
Don’t lie to Eve

Lemma (imperfect to incomplete info.)

imperfect information can be turned into incomplete information with a possible exponential blow-up (via its knowledge-based subset construction).
Outline

1. MPG variations
 - Mean-payoff games
 - Imperfect information

2. Tackling MPGs with imperfect information
 - Incomplete information
 - Observable determinacy
 - Decidable subclasses
 - Pure games with incomplete information

3. Conclusions
Observe that in an MPG of incomplete information:

1. the view $\exists v e$ has of a play in the game is $o_0 \sigma_0 o_1 \sigma_1 \ldots$,

2. given current o_i the game could be in any $q \in o_i$ (not true in imperfect information),

3. $\forall d a m$ can have a two step strategy: choose observations first,

4. "delay" the specific choice of states for later!
Observe that in an MPG of incomplete information:

1. the view $\exists v_e$ has of a play in the game is $o_0\sigma_0o_1\sigma_1\ldots$,
2. given current o_i the game could be in any $q \in o_i$ (not true in imperfect information),
Observe that in an MPG of incomplete information:

1. the view $\exists v_e$ has of a play in the game is $o_0 \sigma_0 o_1 \sigma_1 \ldots$,
2. given current o_i the game could be in any $q \in o_i$ (not true in imperfect information),
3. $\forall d$ can have a two step strategy: choose observations first,
Observe that in an MPG of incomplete information:

1. the view $\exists v e$ has of a play in the game is $o_0 o_0 o_1 o_1 \ldots$,
2. given current o_i the game could be in any $q \in o_i$ (not true in imperfect information),
3. $\forall \text{adam}$ can have a two step strategy: choose observations first,
4. “delay” the specific choice of states for later!
Observable strategies: we let ∀dam reveal to ∃ve only the \((Obs \times \Sigma)^+ \mapsto Obs\) version of his strategy.

Let \(\gamma\) be a function mapping observation-action sequences to concrete state-action ones.
∀dam and determinacy

Definition

- **Observable strategies**: we let ∀dam reveal to ∃ve only the \((\text{Obs} \times \Sigma)^+ \mapsto \text{Obs}\) version of his strategy.
- Let \(\gamma\) be a function mapping observation-action sequences to concrete state-action ones.

Definition (New winning condition)

Let \(\psi\) be a play in the game. ∃ve wins if all paths in \(\gamma(\psi)\) are winning for her. ∀dam wins if there is some path which is winning for him.
∀dam and determinacy

Definition
- Observable strategies: we let ∀dam reveal to ∃ve only the $(Obs \times \Sigma)^+ \mapsto Obs$ version of his strategy.
- Let γ be a function mapping observation-action sequences to concrete state-action ones.

Definition (New winning condition)
Let ψ be a play in the game. ∃ve wins if all paths in $\gamma(\psi)$ are winning for her. ∀dam wins if there is some path which is winning for him.

Theorem (Observable determinacy)
The new winning condition is a projection of the perfect information game winning condition (via γ). The new winning condition is coSuslin and hence determined*.
Outline

1 MPG variations
 - Mean-payoff games
 - Imperfect information

2 Tackling MPGs with imperfect information
 - Incomplete information
 - Observable determinacy
 - Decidable subclasses
 - Pure games with incomplete information

3 Conclusions
Definition (Function sequence classification)

A function sequence is **good** (**bad**) if a function is pointwise bigger or equal (smaller) than a previous one – same observation.

obs: blue

play: f_i

cur. f: $f_i(1) = 0$
Definition (Function sequence classification)

A function sequence is **good** (bad) if a function is pointwise bigger or equal (smaller) than a previous one – same observation.

obs: blue-a-yellow

play: $f_1 \; a \; f_1$

cur. f: $f_1(2) = -3, \; f_1(3) = -1$
Definition (Function sequence classification)

A function sequence is **good** (**bad**) if a function is pointwise bigger or equal (smaller) than a previous one – same observation.

Diagram:

- Node 1: $\Sigma, -3$
 - Edge: $a, -1$
 - Edge: $b, -1$
 - Edge: $\Sigma, -1$

- Node 2: $\Sigma, -1$

- Node 3: $\Sigma, -1$

- Node 4: $\Sigma, +1$

Observation: blue-a-yellow-b-green

Play: $f_1 \ a \ f_1 \ b \ f_2$

Current Function: $f_2(4) = -4$
Function-Reachability game

Definition (Function sequence classification)

A function sequence is good (bad) if a function is pointwise bigger or equal (smaller) then a previous one – same observation.

obs: blue-a-yellow-b-green-a-green

play: $f_1 \ a \ f_1 \ b \ f_2 \ a \ f_3$ **good**

cur. f: $f_3(4) = -3$
Unfolding a MPG with incomplete information

“Unfold” G, stop when a good or bad sequence is reached.

- We are left with a new reachability game
- Not all branches will be labelled...
Let H be the reachability game played on the unfolding of G,

Theorem (Strategy transfer for \existsve)

\existsve has a finite memory winning strategy in G if and only if she has a winning strategy in H.

Theorem (Strat. transfer for \foralldam)

If \foralldam has a winning observable strategy in H then he also has a winning strategy in G.
Finite memory, Adeq. Pure, Pure games

All based on function sequences (branches) of the associated reachability game H.

Definition

1. **Finite memory games**: $\exists \text{eve}$ can force good leaves or $\forall \text{adam}$ can force bad leaves.

2. **Adequately pure games**: $\exists \text{eve}$ ($\forall \text{adam}$) can force good (bad) branches where all but 2 functions have different support.

3. **Pure games [structural]**: the unfolding of G is finite and in all branches, all but 2 functions have different support.
Finite memory, Adeq. Pure, Pure games

All based on function sequences (branches) of the associated reachability game H.

Definition

1. **Finite memory games**: $\exists \text{eve}$ can force good leaves or $\forall \text{dam}$ can force bad leaves.

2. **Adequately pure games**: $\exists \text{eve} \ (\forall \text{dam})$ can force good (bad) branches where all but 2 functions have different support.
Finite memory, Adeq. Pure, Pure games

All based on function sequences (branches) of the associated reachability game H.

Definition

1. **Finite memory games**: \existsve can force good leaves or \foralldam can force bad leaves.

2. **Adequately pure games**: \existsve (\foralldam) can force good (bad) branches where all but 2 functions have different support.

3. **Pure games [structural]**: the unfolding of G is finite and in all branches, all but 2 functions have different support.
Let A be a class of MPGs with incomplete (or imperfect) information. Given MPG with incomplete (imperfect) information G,

Problem (Class membership)

Is G a member of A?

Problem (Winner determination)

Does \existsve have a winning strategy in G?
Summary

<table>
<thead>
<tr>
<th>Information</th>
<th>Finite memory</th>
<th>Adequately pure</th>
<th>Pure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-membership</td>
<td>Undec(^1)</td>
<td>PSPACE-complete</td>
<td>NEXP-hard, in EXPSPACE</td>
</tr>
<tr>
<td>Winner-det.</td>
<td>R-c</td>
<td>PSPACE-complete</td>
<td>EXP-complete</td>
</tr>
</tbody>
</table>

\(^1\)gray=Degorre et al. [2010], other colors are new results
Outline

1. MPG variations
 - Mean-payoff games
 - Imperfect information

2. Tackling MPG with imperfect information
 - Incomplete information
 - Observable determinacy
 - Decidable subclasses
 - Pure games with incomplete information

3. Conclusions
Does \existsve win pure G?

Theorem

Deciding if \existsve has a winning strategy in a given pure MPG with incomplete information is in $\text{NP} \cap \text{coNP}$.

Based on Björklund et al. [2004].

Observe* that positional strategies suffice for \existsve to win pure games with incomplete information.
The class membership problem for pure games with incomplete information is coNP-complete.

Proof.

- One can “guess” a branch in H (of size at most $|\text{Obs}| + 1$) and in polynomial time check that it is neither good nor bad.
- For hardness we reduce from the HAMILTONIAN-CYCLE problem.
HAM-CYCLE as an MPG

\[q_1 \rightarrow \Sigma, 0 \rightarrow q_-, q_+ \rightarrow v_0, +1 \rightarrow v_1, +1 \rightarrow v_2, +1 \rightarrow \ldots \rightarrow v_{n-2}, +1 \rightarrow v_{n-1}, +1 \rightarrow v_n, +1 \rightarrow \tau, 0 \rightarrow \tau, -1 \rightarrow \Sigma, -n \rightarrow \Sigma, 0 \rightarrow q_1 \]

P. Hunter, G. Pérez, J.F. Raskin (ULB)
MPGs with incomplete info.
October, 2013
26 / 28
Summary

1. **Done:** incomplete info., observable determinacy, subclasses
2. **Cooking:** other asymmetric information types, other quantitative games, mixed strategies

<table>
<thead>
<tr>
<th></th>
<th>Finite memory</th>
<th>Adequately pure</th>
<th>Pure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information in</td>
<td>incomplete</td>
<td>imperfect</td>
<td>incomplete</td>
</tr>
<tr>
<td>Finite memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class-membership</td>
<td>Undec⁷</td>
<td>PSPACE-complete</td>
<td>NEXP-hard, in EXPSPACE</td>
</tr>
<tr>
<td>Winner-det.</td>
<td>R-c</td>
<td>PSPACE-complete</td>
<td>EXP-complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ gray = Degorre et al. [2010], other colors are new results
References I

