Linear Temporal Logic
Safety vs. Liveness

- **Safety**: *something bad never happens*

 A counterexample is an *finite* execution leading to something bad happening (e.g. an assertion violation).

- **Liveness**: *something good eventually happens*

 A counterexample is an *infinite* execution on which nothing good happens (e.g. the program does not terminate).
Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
 - **Partial Correctness**: \(\{\varphi}\ P \{\psi}\) iff for any \(s \models \varphi\), if \(P\) terminates on \(s\), then \(P(s) \models \psi\)
 - **Total Correctness**: \(\{\varphi\} P \{\psi\}\) iff for any \(s \models \varphi\), \(P\) terminates on \(s\) and \(P(s) \models \psi\)
 - **Termination**: \(P\) terminates on \(s\)

- Need to reason about infinite computations:
 - systems that are in continuous interaction with their environment
 - servers, control systems, etc.
 - e.g. “every request is eventually answered”
Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states.
- Each state in the sequence gives an interpretation to the atomic propositions.
- Temporal operators indicate in which states a formula should be interpreted.

Example 1 Consider the sequence of states:

\[\{p, q\} \{\neg p, \neg q\} (\{\neg p, q\} \{p, q\})^\omega \]

Starting from position 2, q holds forever. □
Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of *atomic propositions*.

A *Kripke structure* is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of *states*,
- $s_0 \in S$ a designated *initial state*,
- $\rightarrow : S \times S$ is a *transition relation*,
- $L : S \rightarrow 2^\mathcal{P}$ is a *labeling function*.
Paths in Kripke Structures

A path in K is an infinite sequence $\pi : s_0, s_1, s_2 \ldots$ such that, for all $i \geq 0$, we have $s_i \rightarrow s_{i+1}$.

By $\pi(i)$ we denote the i-th state on the path.

By π_i we denote the suffix $s_i, s_{i+1}, s_{i+2} \ldots$.

$$\inf(\pi) = \{ s \in S \mid s \text{ appears infinitely often on } \pi \}$$

If S is finite and π is infinite, then $\inf(\pi) \neq \emptyset$.
Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- **atomic proposition symbols** p, q, r, \ldots,
- **boolean connectives** $\neg, \lor, \land, \rightarrow, \leftrightarrow$,
- **temporal connectives** $\bigcirc, \blacksquare, \Diamond, \mathcal{U}, \mathcal{R}$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi$, $\blacksquare \varphi$, $\Diamond \varphi$, $\varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.
Temporal Operators

- \Diamond is read at the next time (in the next state)
- \square is read always in the future (in all future states)
- \diamondsuit is read eventually (in some future state)
- \mathcal{U} is read until
- \mathcal{R} is read releases
Linear Temporal Logic: Semantics

\[K, \pi \models p \iff p \in L(\pi(0)) \]
\[K, \pi \models \neg \varphi \iff K, \pi \not\models \varphi \]
\[K, \pi \models \varphi \land \psi \iff K, \pi \models \varphi \text{ and } K, \pi \models \psi \]
\[K, \pi \models \Diamond \varphi \iff K, \pi \models \top \cup \varphi \]
\[K, \pi \models \Box \varphi \iff K, \pi \models \neg \Diamond \neg \varphi \]
\[K, \pi \models \varphi \mathcal{R} \psi \iff K, \pi \models \neg (\neg \varphi \cup \neg \psi) \]

Derived meanings:
Examples

• p holds throughout the execution of the system (p is invariant) : $\square p$

• whenever p holds, q is bound to hold in the future : $\square (p \rightarrow \Diamond q)$

• p holds infinitely often : $\Box \Diamond p$

• p holds forever starting from a certain point in the future : $\Diamond \Box p$

• $\Box (p \rightarrow \Diamond (\neg q U r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.

• $p \mathcal{R} q$: q is true unless this obligation is released by p being true in a previous state.
LTL \equiv FOL

Theorem 1 *LTL and FOL on infinite words have the same expressive power.*

From LTL to FOL:

\[
\begin{align*}
Tr(q) &= p_q(t) \\
Tr(\neg \varphi) &= \neg Tr(\varphi) \\
Tr(\varphi \land \psi) &= Tr(\varphi) \land Tr(\psi) \\
Tr(\varnothing \varphi) &= Tr(\varphi)[t + 1/t] \\
Tr(\varphi U \psi) &= \exists x . Tr(\psi)[x/t] \land \forall y . y < x \rightarrow Tr(\varphi)[y/t]
\end{align*}
\]

The direction from FOL to LTL is done using *star-free* sets.
LTL < S1S

Definition 1 A language $L \subseteq \Sigma^\omega$ is said to be non-counting iff:

$$\exists n_0 \forall n \geq n_0 \forall u, v \in \Sigma^* \forall \beta \in \Sigma^\omega . uv^n \beta \in L \iff uv^{n+1} \beta \in L$$

Example 2 0^*1^ω is non-counting. Let $n_0 = 2$. We have three cases:

1. $u, v \in 0^*$ and $\beta \in 0^*1^\omega$:
 $$\forall n \geq n_0 . uv^n \beta \in L$$

2. $u \in 0^*$, $v \in 0^*1^*$ and $\beta \in 1^\omega$:
 $$\forall n \geq n_0 . uv^n \beta \not\in L$$

3. $u \in 0^*1^*$, $v \in 1^*$ and $\beta \in 1^\omega$:
 $$\forall n \geq n_0 . uv^n \beta \in L$$
Conversely, a language $L \subseteq \Sigma^\omega$ is said to be counting iff:

$$\forall n_0 \exists n \geq n_0 \exists u, v \in \Sigma^* \exists \beta \in \Sigma^\omega . (uv^n \beta \notin L \land uv^{n+1} \beta \in L) \lor (uv^n \beta \in L \land uv^{n+1} \beta \notin L)$$

Example 3 $(00)^*1^\omega$ is counting.

Given n_0 *take the next even number* $n \geq n_0$, $u = \epsilon$, $v = 0$ and $\beta = 1^\omega$.

Then $uv^n \beta \in (00)^*1^\omega$ *and* $uv^{n+1} \beta \notin (00)^*1^\omega$. □
LTL < S1S

Proposition 1 Each LTL-definable ω-language is non-counting.

\[\exists n_0 \forall n \geq n_0 \forall u, v \in \Sigma^* \forall \beta \in \Sigma^\omega \ . \ uv^n \beta \models \varphi \iff uv^{n+1} \beta \models \varphi \]

By induction on the structure of \(\varphi \) :

- \(\varphi = a \) : choose \(n_0 = 1 \).
- \(\varphi = \neg \psi \) : choose the same \(n_0 \) as for \(\psi \).
- \(\varphi = \psi_1 \land \psi_2 \) : let \(n_1 \) for \(\psi_1 \) and \(n_2 \) for \(\psi_2 \), and choose \(n_0 = \max(n_1, n_2) \).
LTL < S1S

• \(\varphi = \Diamond \psi \): let \(n_1 \) for \(\psi \) and choose \(n_0 = n_1 + 1 \).
 - we show \(\forall n \geq n_0 . (uv^n \beta)_1 \models \psi \equiv (uv^{n+1} \beta)_1 \models \psi \)
 - case \(u \neq \epsilon \), i.e. \(u = au' \):

\[
(uu'v^n \beta)_1 \models \psi \iff u'v^n \beta \models \psi \iff u'v^{n+1} \beta \models \psi \iff (uu'v^n \beta)_1 \models \psi
\]

- case \(u = \epsilon \), \(v = av' \):

\[
((av')^n \beta)_1 \models \psi \iff v'(av')^{n-1} \beta \models \psi \iff v'(av')^n \beta \models \psi \iff ((av')^n+1 \beta)_1 \models \psi
\]
LTL < S1S

• $\varphi = \psi_1 \mathcal{U} \psi_2$: let n_1 for ψ_1 and n_2 for ψ_2, and choose $n_0 = \max(n_1, n_2) + 1$.
 - we show $\forall n \geq n_0. \ uv^n\beta \models \psi_1 \mathcal{U} \psi_2 \Rightarrow uv^{n+1}\beta \models \psi_1\mathcal{U}$
 - we have $(uv^n\beta)_j \models \psi_2$ and $\forall i < j. (uv^n\beta)_i \models \psi_1$ for some $j \geq 0$
 - case $j \leq |u|$: $(uv^{n+1}\beta)_j \models \psi_2$ and $\forall i < j. (uv^{n+1}\beta)_i \models \psi_1$
 - case $j > |u|$: let $j' = j + |v|$
 * $(uv^{n+1}\beta)_{j'} = (uv^n\beta)_j \models \psi_2$
 * for all $|u| + |v| \leq i < j + |v|$. $(uv^{n+1}\beta)_i = (uv^n\beta)_{i-|v|} \models \psi_1$
 * for all $i < |u| + |v|$. $((uv)v^n\beta)_i \models \psi_1 \iff ((uv)v^{n-1}\beta)_i \models \psi_1$
 - the direction \iff is left to the reader.

Theorem 2 LTL is strictly less expressive than S1S.
LTL Model Checking
System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often).

- Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_φ that accepts all sequences over $2^\mathcal{P}$ satisfying φ.

Q: Since LTL \subset S1S, this automaton can be built, so why bother?

- Check whether $\mathcal{L}(A_\varphi) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.
Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A = \langle S, I, T, F \rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F = \{F_1, \ldots, F_k\} \subseteq 2^S$ is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all $1 \leq i \leq k$, we have

$$\inf(\pi) \cap F_i \neq \emptyset$$
GBA and BA are equivalent

Let $A = \langle S, I, T, \mathcal{F} \rangle$, where $\mathcal{F} = \{F_1, \ldots, F_k\}$.

Build $A' = \langle S', I', T', F' \rangle$:

- $S' = S \times \{1, \ldots, k\}$,
- $I' = I \times \{1\}$,
- $(\langle s, i \rangle, a, \langle t, j \rangle) \in T'$ iff $(s, t) \in T$ and:
 - $j = i$ if $s \not\in F_i$,
 - $j = (i \mod k) + 1$ if $s \in F_i$.
- $F' = F_1 \times \{1\}$.
The idea of the construction

Let $K = \langle S, s_0, \rightarrow, L \rangle$ be a Kripke structure over a set of atomic propositions P, $\pi : \mathbb{N} \rightarrow S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.
Closure

Let φ be an LTL formula written in negation normal form.

The closure of φ is the set $Cl(\varphi) \in 2^{L(LTL)}$:

- $\varphi \in Cl(\varphi)$
- $\bigcirc \psi \in Cl(\varphi) \Rightarrow \psi \in Cl(\varphi)$
- $\psi_1 \cdot \psi_2 \in Cl(\varphi) \Rightarrow \psi_1, \psi_2 \in Cl(\varphi)$, for all $\cdot \in \{\land, \lor, U, R\}$.

Example 4 $Cl(\Diamond p) = Cl(\top \cup p) = \{\Diamond p, p, \top\}$

Q: What is the size of the closure relative to the size of φ?
Labeling rules

Given $\pi : \mathbb{N} \to 2^\mathcal{P}$ and φ, we define $\tau : \mathbb{N} \to 2^{\text{Cl}(\varphi)}$ as follows:

- for $p \in \mathcal{P}$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \not\in \pi(i)$

- if $\psi_1 \land \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ and $\psi_2 \in \tau(i)$

- if $\psi_1 \lor \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ or $\psi_2 \in \tau(i)$
Labeling rules

\[\varphi U \psi \iff \psi \lor (\varphi \land \bigcirc (\varphi U \psi)) \]
\[\varphi R \psi \iff \psi \land (\varphi \lor \bigcirc (\varphi R \psi)) \]

• if \(\bigcirc \psi \in \tau(i) \) then \(\psi \in \tau(i + 1) \)

• if \(\psi_1 U \psi_2 \in \tau(i) \) then either \(\psi_2 \in \tau(i) \), or \(\psi_1 \in \tau(i) \) and \(\psi_1 U \psi_2 \in \tau(i + 1) \)

• if \(\psi_1 R \psi_2 \in \tau(i) \) then \(\psi_2 \in \tau(i) \) and either \(\psi_1 \in \tau(i) \) or \(\psi_1 R \psi_2 \in \tau(i + 1) \)
Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above

- $\varphi \in \tau(0)$, and

- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$, then for some $j \geq i$, $\psi_2 \in \tau(j)$ (the eventuality condition)
Building the GBA $A_\varphi = \langle S, I, T, F \rangle$

The automaton A_φ is the set of labeling rules + the eventuality condition(s)!

- $\Sigma = 2^P$ is the alphabet
- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s$ and $\varphi_2 \in s$
 - $\varphi_1 \lor \varphi_2 \in s \Rightarrow \varphi_1 \in s$ or $\varphi_2 \in s$
- $I = \{ s \in S \mid \varphi \in s \}$,
- $(s, \alpha, t) \in T$ iff:
 - for all $p \in P$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \not\in \alpha$,
 - $\Box \psi \in s \Rightarrow \psi \in t$,
 - $\psi_1 \mathcal{U} \psi_2 \in s \Rightarrow \psi_2 \in s$ or $[\psi_1 \in s$ and $\psi_1 \mathcal{U} \psi_2 \in t]$
 - $\psi_1 \mathcal{R} \psi_2 \in s \Rightarrow \psi_2 \in s$ and $[\psi_1 \in s$ or $\psi_1 \mathcal{R} \psi_2 \in t]$
Building the GBA $A_\varphi = \langle S, I, T, F \rangle$

- for each eventuality $\phi U \psi \in Cl(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ

- it is sufficient to ensure that, for each $\phi U \psi \in Cl(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi U \psi$ and ψ appear

- let $\phi_1 U \psi_1, \ldots \phi_n U \psi_n$ be the “until” subformulae of φ

$$F = \{ F_1, \ldots, F_n \}, \text{ where:}$$

$$F_i = \{ s \in S \mid \phi_i U \psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i U \psi_i \not\in s \}$$

for all $1 \leq i \leq n$.