Interpolant Strength in Model Checking
Based on CAV’12 work

Simone Fulvio Rollini, O. Sery, N. Sharygina

Formal Verification Lab, University of Lugano

November 4th, 2012
Outline

1 Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems
Outline

1 Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems

2 Contribution
 - Interpolant Strength in Model Checking
 - Simultaneous Abstraction: Requirements and Constraints
 - Path Interpolation: Requirements and Constraints
1 Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems

2 Contribution
 - Interpolant Strength in Model Checking
 - Simultaneous Abstraction: Requirements and Constraints
 - Path Interpolation: Requirements and Constraints

3 Conclusions
Outline

1 Background
- Interpolation for Model Checking
- Labeled Interpolation Systems

2 Contribution
- Interpolant Strength in Model Checking
- Simultaneous Abstraction: Requirements and Constraints
- Path Interpolation: Requirements and Constraints

3 Conclusions
1. Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems

2. Contribution
 - Interpolant Strength in Model Checking
 - Simultaneous Abstraction: Requirements and Constraints
 - Path Interpolation: Requirements and Constraints

3. Conclusions
• Model Checking
Symbolic Model Checking
Hardware and Software Verification

- Model Checking
 - System model vs behavioral property specification
Symbolic Model Checking
Hardware and Software Verification

- Model Checking
 - System model vs behavioral property specification
- Symbolic SAT-based approach
Symbolic Model Checking
Hardware and Software Verification

- Model Checking
 - System model vs behavioral property specification

- Symbolic SAT-based approach
 - System and properties as logic formulae
• Model Checking
 • System model vs behavioral property specification

• Symbolic SAT-based approach
 • System and properties as logic formulae
 • Problem encoding into logic (SAT)
Symbolic Model Checking
Hardware and Software Verification

- Model Checking
 - System model vs behavioral property specification

- Symbolic SAT-based approach
 - System and properties as logic formulae
 - Problem encoding into logic (SAT)
 - Problem solving by means of reasoning engines (SAT solvers)
Interpolation
Applications to Symbolic Model Checking

- Bounded model checking: approximate reachability set computation [McM03]
Interpolation
Applications to Symbolic Model Checking

- Bounded model checking: approximate reachability set computation [McM03]
- Predicate abstraction refinement based on spurious behaviors [HJRM04]
Interpolation
Applications to Symbolic Model Checking

- Bounded model checking: approximate reachability set computation [McM03]
- Predicate abstraction refinement based on spurious behaviors [HJRM04]
- Transition relation approximation [JM05]
Interpolation
Applications to Symbolic Model Checking

- Bounded model checking: approximate reachability set computation [McM03]
- Predicate abstraction refinement based on spurious behaviors [HJRM04]
- Transition relation approximation [JM05]
- Lazy abstraction [McM06]
• Bounded model checking: approximate reachability set computation [McM03]

• Predicate abstraction refinement based on spurious behaviors [HJRM04]

• Transition relation approximation [JM05]

• Lazy abstraction [McM06]

• Software upgrade checking [Pincette,SFS12]
Interpolation
Applications to Symbolic Model Checking

- Bounded model checking: approximate reachability set computation [McM03]
- Predicate abstraction refinement based on spurious behaviors [HJRM04]
- Transition relation approximation [JM05]
- Lazy abstraction [McM06]
- Software upgrade checking [Pincette, SFS12]

Property-based overapproximation
• Various applications, different interpolation requirements
Various applications, different interpolation requirements

Various interpolation systems [P97, McM04, DKPW10]
• Various applications, different interpolation requirements

• Various interpolation systems [P97, McM04, DKPW10]

• Various interpolant features
Open Issues and Contribution

- Various applications, different interpolation requirements
- Various interpolation systems [P97,McM04,DKPW10]
- Various interpolant features
 - Strength affects overapproximation coarseness
Interpolation
Open Issues and Contribution

- Various applications, different interpolation requirements
- Various interpolation systems [P97, McM04, DKPW10]
- Various interpolant features
 - Strength affects overapproximation coarseness
 - Strength empirically affects verification performance, convergence
Interpolation
Open Issues and Contribution

• Various applications, different interpolation requirements

• Various interpolation systems [P97, McM04, DKPW10]

• Various interpolant features
 • Strength affects overapproximation coarseness
 • Strength empirically affects verification performance, convergence

⇒ Formalization of requirements for simultaneous abstraction, path interpolation
Open Issues and Contribution

- Various applications, different interpolation requirements
- Various interpolation systems [P97, McM04, DKPW10]
- Various interpolant features
 - Strength affects overapproximation coarseness
 - Strength empirically affects verification performance, convergence

⇒ Formalization of requirements for simultaneous abstraction, path interpolation

⇒ Identification of subset of interpolation systems satisfying requirements
Interpolation [Craig57, McM03]

Background

- Craig’s interpolant I for unsatisfiable $A \land B$

$A \rightarrow I \land B$ is overapproximation A conflicting with B.
Interpolation [Craig57, McM03]

Background

- Craig’s interpolant I for unsatisfiable $A \land B$
 - $A \rightarrow I \quad I \land B$ unsatisfiable
Interpolation [Craig57, McM03]

Background

- Craig’s interpolant I for unsatisfiable $A \land B$
 - $A \rightarrow I \quad I \land B$ unsatisfiable
 - I defined over common symbols of A and B
Interpolation [Craig57, McM03]

Background

- Craig’s interpolant I for unsatisfiable $A \land B$
 - $A \rightarrow I \land B$ unsatisfiable
 - I defined over common symbols of A and B
 - I as overapproximation A conflicting with B
Interpolation [Craig57, McM03]

Background

- Craig’s interpolant I for unsatisfiable $A \land B$
 - $A \rightarrow I$ \hspace{1cm} $I \land B$ unsatisfiable
 - I defined over common symbols of A and B
 - I as overapproximation A conflicting with B
Interpolant Strength
Applications to Symbolic Model Checking

- l_1 stronger than l_2 \quad $l_1 \rightarrow l_2$
- I_1 stronger than I_2 \quad $I_1 \rightarrow I_2$

- Interpolation as property-based overapproximation
• I_1 stronger than I_2 \quad $I_1 \rightarrow I_2$

• Interpolation as property-based overapproximation

• Strength affects approximation coarseness
Interpolant Strength
Applications to Symbolic Model Checking

- I_1 stronger than I_2 \quad $I_1 \rightarrow I_2$
- Interpolation as property-based overapproximation
- Strength affects approximation coarseness
• Interpolant I for unsatisfiable $A \land B$
• Interpolant I for unsatisfiable $A \land B$

• Different procedures [P97, McM04, DKPW10]
Interpolants Generation

- Interpolant I for unsatisfiable $A \land B$
- Different procedures [P97, McM04, DKPW10]
- Standard generation approach
Interpolants Generation

- Interpolant I for unsatisfiable $A \land B$
- Different procedures [P97, McM04, DPKW10]
- Standard generation approach
 - Derivation of unsatisfiability resolution proof of $A \land B$
Interpolation in SAT

Interpolants Generation

- Interpolant I for unsatisfiable $A \land B$
- Different procedures [P97, McM04, DPKW10]
- Standard generation approach
 - Derivation of unsatisfiability resolution proof of $A \land B$
 - Computation of I from proof structure
Proofs

SAT

- Propositional SAT $p \land (\overline{p} \lor r)$
• Propositional SAT \[p \land (\overline{p} \lor r) \]

• Proof of unsatisfiability
Proofs

SAT

- Propositional SAT: \(p \land (\overline{p} \lor r) \)

- Proof of unsatisfiability
 - Certificate of unsatisfiability
Proofs
SAT

- Propositional SAT \(p \land (\overline{p} \lor r) \)

- Proof of unsatisfiability
 - Certificate of unsatisfiability
 - Generated at solving time
Proofs

SAT

- Propositional SAT \(p \land (\overline{p} \lor r) \)

- Proof of unsatisfiability
 - Certificate of unsatisfiability
 - Generated at solving time

- CDCL SAT solver
Proofs

SAT

- Propositional SAT \(p \land (\overline{p} \lor r) \)

- Proof of unsatisfiability
 - Certificate of unsatisfiability
 - Generated at solving time

- CDCL SAT solver
 - Resolution system
Resolution System
Background

- Literal \(p \), \(\overline{p} \)
Resolution System

Background

- Literal
 \[p \quad \overline{p} \]

- Clause
 \[p \lor \overline{q} \lor r \lor \ldots \Rightarrow p\overline{q}r\ldots \quad \text{Empty clause} \quad \bot \]
Resolution System
Background

- Literal \(p \quad \overline{p} \)

- Clause \(p \lor \overline{q} \lor r \lor \ldots \leadsto p\overline{q}r\ldots \) Empty clause \(\bot \)

- Input formula \((p \lor q) \land (r \lor \overline{p}) \land \ldots \leadsto \{pq, r\overline{p}, \ldots\} \)
Resolution System

Background

- **Literal** \(p \quad \overline{p} \)

- **Clause** \(p \lor \overline{q} \lor r \lor \ldots \leadsto p\overline{q}r \ldots \) Empty clause \(\bot \)

- **Input formula** \((p \lor q) \land (r \lor \overline{p}) \land \ldots \leadsto \{pq, r\overline{p}, \ldots\}\)

- **Resolution rule**

\[
\begin{array}{c}
pC \\
\overline{p}D
\end{array} \quad \frac{C}{D} \quad \frac{D}{p}
\]

Antecedents: \(pC \quad \overline{p}D \)
Resolvent: \(CD \)
Pivot: \(p \)
Resolution Proofs

Resolution System

- Resolution proof of unsatisfiability of a set of clauses S
Resolution Proofs

Resolution System

- Resolution proof of unsatisfiability of a set of clauses S
 - Tree
 - Leaves as clauses of S
 - Inner nodes as resolvents
 - Root as unique \bot

Set of clauses $A = \{p \lor q\}$, $B = \{p \land r\}$
Resolution Proofs
Resolution System

- Resolution proof of unsatisfiability of a set of clauses S
 - Tree
 - Leaves as clauses of S
 - Inner nodes as resolvents
 - Root as unique \bot

- Set of clauses $A = \{pq, r\}$
 $B = \{pr, q\}$
Resolution Proofs
Resolution System

• Resolution proof of unsatisfiability of a set of clauses S
 • Tree
 • Leaves as clauses of S
 • Inner nodes as resolvents
 • Root as unique \bot

• Set of clauses $A = \{p\overline{q}, r\}$ $B = \{\overline{pr}, q\}$

• Proof of unsatisfiability

\[
\begin{array}{c}
\overline{p}q \\
\overline{pr} \\
\overline{qr} \\
\overline{qr} \\
\overline{q} \\
\overline{q} \\
\bot
\end{array}
\]
1 Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems

2 Contribution
 - Interpolant Strength in Model Checking
 - Simultaneous Abstraction: Requirements and Constraints
 - Path Interpolation: Requirements and Constraints

3 Conclusions
Interpolation system parametric in labeling function [DKPW10]
• Interpolation system parametric in labeling function [DKPW10]

• Interpolant determined by proof and labeling
• Interpolation system parametric in labeling function [DKPW10]

• Interpolant determined by proof and labeling

• Generalization of [P97,McM04] \((P, M, M')\)
• Interpolation system parametric in labeling function [DKPW10]

• Interpolant determined by proof and labeling

• Generalization of [P97,McM04] \((P, M, M')\)

• Strength comparison can be reduced to labeling comparison
• Labeling L for $A \land B$
Labeling L for $A \land B$

- Label $\in \{a, b, ab\}$
Labeling

Labeled Interpolation Systems

- Labeling L for $A \land B$
 - Label $\in \{a, b, ab\}$
 - Individual clause literals
Labeling

Labeled Interpolation Systems

- Labeling L for $A \land B$
 - Label $\in \{a, b, ab\}$
 - Individual clause literals

- A-local $\mapsto a$, B-local $\mapsto b$, AB-common $\mapsto \{a, b, ab\}$
Labeling
Labeled Interpolation Systems

- Labeling L for $A \land B$
 - Label $\in \{a, b, ab\}$
 - Individual clause literals

- A-local $\mapsto a$, B-local $\mapsto b$, AB-common $\mapsto \{a, b, ab\}$

- $A = (\overline{p} \lor ?q) \land (p \lor \overline{q})$
 - $B = (\overline{q} \lor r) \land (q \lor \overline{r})$
Labeling Lattice [DKPW10]
Labeled Interpolation Systems

- $b \preceq ab \preceq a \sim\rightarrow (\alpha_1, \ldots, \alpha_n) \preceq (\beta_1, \ldots, \beta_n)$
Labeling Lattice [DKPW10]

Labeled Interpolation Systems

- $b \preceq ab \preceq a \leadsto (\alpha_1, \ldots, \alpha_n) \preceq (\beta_1, \ldots, \beta_n)$

- $(\alpha_1, \ldots, \alpha_n) \preceq (\beta_1, \ldots, \beta_n) \Rightarrow l_1 \rightarrow l_2$
Labeling Lattice [DKPW10]

Labeled Interpolation Systems

- $b \preceq ab \preceq a \Rightarrow (\alpha_1, \ldots, \alpha_n) \preceq (\beta_1, \ldots, \beta_n)$
- $(\alpha_1, \ldots, \alpha_n) \preceq (\beta_1, \ldots, \beta_n) \implies I_1 \rightarrow I_2$
- Labeling lattice
1 Background
- Interpolation for Model Checking
- Labeled Interpolation Systems

2 Contribution
- Interpolant Strength in Model Checking
- Simultaneous Abstraction: Requirements and Constraints
- Path Interpolation: Requirements and Constraints

3 Conclusions
1 Background
 ● Interpolation for Model Checking
 ● Labeled Interpolation Systems

2 Contribution
 ● Interpolant Strength in Model Checking
 ● Simultaneous Abstraction: Requirements and Constraints
 ● Path Interpolation: Requirements and Constraints

3 Conclusions
Interpolant Strength in Model Checking

Contribution

- Systematic use of interpolation in symbolic model checking
Systematic use of interpolation in symbolic model checking

Focus on **interpolant strength**
Interpolant Strength in Model Checking

Contribution

- Systematic use of interpolation in symbolic model checking

- Focus on **interpolant strength**

⇒ **Scenarios**: simultaneous abstraction, path interpolation
• Systematic use of interpolation in symbolic model checking

• Focus on \textbf{interpolant strength}

⇒ \textbf{Scenarios}: simultaneous abstraction, path interpolation

• Generation of multiple interpolants I_1, \ldots, I_n
• Systematic use of interpolation in symbolic model checking

• Focus on **interpolant strength**

⇒ **Scenarios**: simultaneous abstraction, path interpolation

 • Generation of multiple interpolants I_1, \ldots, I_n
 • Additional requirements on I_1, \ldots, I_n
• Systematic use of interpolation in symbolic model checking

• Focus on **interpolant strength**

⇒ **Scenarios**: simultaneous abstraction, path interpolation
 - Generation of multiple interpolants I_1, \ldots, I_n
 - Additional requirements on I_1, \ldots, I_n

⇒ **Constraints on labeled interpolation systems**
Interpolant Strength in Model Checking

Contribution

- Systematic use of interpolation in symbolic model checking
- Focus on **interpolant strength**

⇒ **Scenarios**: simultaneous abstraction, path interpolation
 - Generation of multiple interpolants I_1, \ldots, I_n
 - Additional requirements on I_1, \ldots, I_n

⇒ **Constraints on labeled interpolation systems**
 - Generation of each I_i with different L_i
• Systematic use of interpolation in symbolic model checking

• Focus on **interpolant strength**

⇒ **Scenarios**: simultaneous abstraction, path interpolation

 • Generation of multiple interpolants \(I_1, \ldots, I_n \)

 • Additional requirements on \(I_1, \ldots, I_n \)

⇒ **Constraints on labeled interpolation systems**

 • Generation of each \(I_i \) with different \(L_i \)

 • Identification of constraints on \(L_1, \ldots, L_n \)
• Simultaneous abstraction
Applications to Model Checking
Labeled Interpolation Systems

• Simultaneous abstraction
 • Software upgrade checking [Pincette,SFS12]
Applications to Model Checking
Labeled Interpolation Systems

- Simultaneous abstraction
 - Software upgrade checking [Pincette, SFS12]
- Path interpolation
Applications to Model Checking
Labeled Interpolation Systems

- Simultaneous abstraction
 - Software upgrade checking [Pincette, SFS12]

- Path interpolation
 - Counterexample-guided abstraction refinement [CGJLV00]
Outline

1 Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems

2 Contribution
 - Interpolant Strength in Model Checking
 - Simultaneous Abstraction: Requirements and Constraints
 - Path Interpolation: Requirements and Constraints

3 Conclusions
Simultaneous Abstraction

- Program safe

\[
\begin{align*}
\phi_{\text{main}} &\land \phi_{f_1} \land \phi_{f_2} \land \phi_{f_3} \land \phi_{f_4} \\
\text{UNSAT} \quad &
\quad \\
\phi_{f_1} \land \phi_{f_2} \land \phi_{f_3} \land \phi_{f_4} \\
\text{UNSAT} \quad &
\quad \\
\phi_{f_2} \land \phi_{f_4} \\
\text{Check interpolants} &
\end{align*}
\]

Functions update

- \(f_2 \mapsto f_2' \)
- \(f_4 \mapsto f_4' \)

Program safe? Check

\[
\phi_{f_2'} \rightarrow I_{f_2} \\
\phi_{f_4'} \rightarrow I_{f_4}
\]
Software Upgrade Checking
Simultaneous Abstraction

- Program safe

\[\phi_{main} \land \phi_{f1} \land \phi_{f2} \land \phi_{f3} \land \phi_{f4} \quad \text{UNSAT} \]
Software Upgrade Checking
Simultaneous Abstraction

- **Program safe**
 \[\phi_{main} \land \phi_{f1} \land \phi_{f2} \land \phi_{f3} \land \phi_{f4} \quad \text{UNSAT} \]

- **Extract interpolants**
Software Upgrade Checking
Simultaneous Abstraction

- Program safe
 \[\phi_{main} \land \phi_{f1} \land \phi_{f2} \land \phi_{f3} \land \phi_{f4} \quad \text{UNSAT} \]

- Extract interpolants
 \[l_{main} \land l_{f1} \land l_{f2} \land l_{f3} \land l_{f4} \quad \text{UNSAT} \]
Software Upgrade Checking
Simultaneous Abstraction

• Program safe
 \[\phi_{main} \land \phi_{f1} \land \phi_{f2} \land \phi_{f3} \land \phi_{f4} \quad \text{UNSAT} \]

• Extract interpolants
 \[I_{main} \land I_{f1} \land I_{f2} \land I_{f3} \land I_{f4} \quad \text{UNSAT} \]

• Functions update
 \[f_2 \leadsto f'_2 \quad f_4 \leadsto f'_4 \]
Software Upgrade Checking
Simultaneous Abstraction

- Program safe: \(\phi_{\text{main}} \land \phi_{f1} \land \phi_{f2} \land \phi_{f3} \land \phi_{f4} \) \text{ UNSAT}
- Extract interpolants: \(l_{\text{main}} \land l_{f1} \land l_{f2} \land l_{f3} \land l_{f4} \) \text{ UNSAT}
- Functions update: \(f_2 \leadsto f'_2 \) \(f_4 \leadsto f'_4 \)
- Program safe?

S.F.Rollini (USI) Interpolant Strength in Model Checking November 4th, 2012
Software Upgrade Checking
Simultaneous Abstraction

- Program safe
 \[\phi_{main} \land \phi_{f1} \land \phi_{f2} \land \phi_{f3} \land \phi_{f4} \land \text{UNSAT} \]

- Extract interpolants
 \[l_{main} \land l_{f1} \land l_{f2} \land l_{f3} \land l_{f4} \land \text{UNSAT} \]

- Functions update
 \[f_2 \leadsto f'_2 \quad f_4 \leadsto f'_4 \]

- Program safe?
 Check
 \[\phi_{f'2} \rightarrow l_{f2} \quad \phi_{f'4} \rightarrow l_{f4} \]
Software Upgrade Checking

Simultaneous Abstraction

- Program safe
 \[\phi_{main} \land \phi_{f1} \land \phi_{f2} \land \phi_{f3} \land \phi_{f4} \quad \text{UNSAT} \]

- Extract interpolants
 \[I_{main} \land I_{f1} \land I_{f2} \land I_{f3} \land I_{f4} \quad \text{UNSAT} \]

- Functions update
 \[f_2 \leadsto f'_2 \quad f_4 \leadsto f'_4 \]

- Program safe?
 \[\text{Check} \quad \phi_{f'2} \rightarrow I_{f2} \quad \phi_{f'4} \rightarrow I_{f4} \]
• Requirement: $I_1 \land \ldots \land I_n \quad \text{UNSAT}$
Results

Simultaneous Abstraction

- Requirement: \(I_1 \land \ldots \land I_n \ \text{UNSAT} \)

- Satisfied for: \(L_1, \ldots, L_n \preceq \text{Pudlák} \)
Results
Simultaneous Abstraction

- Requirement: \(I_1 \land \ldots \land I_n \) UNSAT
- Satisfied for: \(L_1, \ldots, L_n \preceq \text{Pudlák} \)
- Not satisfied in general for: \(L_i \succ \text{Pudlák} \)
Results
Simultaneous Abstraction

- Requirement: \(I_1 \land \ldots \land I_n \) UNSAT

- Satisfied for: \(L_1, \ldots, L_n \preceq \text{Pudlák} \)

- Not satisfied in general for: \(L_i \succ \text{Pudlák} \)
Outline

1 Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems

2 Contribution
 - Interpolant Strength in Model Checking
 - Simultaneous Abstraction: Requirements and Constraints
 - Path Interpolation: Requirements and Constraints

3 Conclusions
• Counterexample-guided abstraction refinement
 • Abstract \rightarrow Check \rightarrow Refine
Counterexample-guided abstraction refinement
 - Abstract \rightarrow Check \rightarrow Refine

Spurious trace
• Counterexample-guided abstraction refinement
 • Abstract \rightarrow Check \rightarrow Refine

• Spurious trace $\tau_1 \land \ldots \land \tau_n$ UNSAT

\[
\begin{align*}
\text{init} & \quad \tau_1 & \quad \tau_2 & \quad \ldots & \quad \tau_i & \quad \ldots & \quad \tau_n & \quad \text{error} \\
\top & \quad & \quad & \quad & \quad & \quad & \bot
\end{align*}
\]
• Counterexample-guided abstraction refinement
 • Abstract \rightarrow Check \rightarrow Refine

• Spurious trace $\tau_1 \land \ldots \land \tau_n$ UNSAT

S.F. Rollini (USI) Interpolant Strength in Model Checking November 4th, 2012 26 / 30
CEGAR
Path Interpolation

- Counterexample-guided abstraction refinement
 - Abstract \rightarrow Check \rightarrow Refine

- Spurious trace $\tau_1 \land \ldots \land \tau_n$ UNSAT

- Extract interpolants
 $\top \land \tau_1 \rightarrow I_1$
 $I_i \land \tau_{i+1} \rightarrow I_{i+1}$
 $I_{n-1} \land \tau_n \rightarrow \bot$
• Counterexample-guided abstraction refinement
 • Abstract \rightarrow Check \rightarrow Refine

• Spurious trace $\tau_1 \land \ldots \land \tau_n$ UNSAT

$\begin{array}{c}
\text{init} \quad \tau_1 \quad \tau_2 \quad \ldots \quad \tau_i \quad \ldots \quad \tau_n \quad \text{error}
\end{array}$

$\begin{array}{c}
\top \quad \tau_1 \quad \tau_2 \quad \ldots \quad \tau_i \quad \ldots \quad \tau_n \quad \bot
\end{array}$

• Extract interpolants
 $\top \land \tau_1 \rightarrow l_1$ $l_i \land \tau_{i+1} \rightarrow l_{i+1}$ $l_{n-1} \land \tau_n \rightarrow \bot$

$\begin{array}{c}
\text{init} \quad \tau_1 \quad \tau_2 \quad \ldots \quad \tau_i \quad \ldots \quad \tau_n \quad \text{error}
\end{array}$

$\begin{array}{c}
\top \quad l_1 \quad l_2 \quad \ldots \quad l_{i-1} \quad l_i \quad l_{n-1} \quad \bot
\end{array}$
- Counterexample-guided abstraction refinement
 - Abstract \rightarrow Check \rightarrow Refine

- Spurious trace $\tau_1 \land \ldots \land \tau_n$ UNSAT

- Extract interpolants

$$\top \land \tau_1 \rightarrow I_1 \quad I_i \land \tau_{i+1} \rightarrow I_{i+1} \quad I_{n-1} \land \tau_n \rightarrow \bot$$

\[\begin{array}{cccccccc}
\text{init} & \tau_1 & \tau_2 & \ldots & \tau_i & \ldots & \tau_n & \text{error} \\
\top & l_1 & l_2 & \ldots & l_{i-1} & l_i & l_{n-1} & \bot
\end{array} \]
Results
Path Interpolation

- Requirement: \(\tau_1 \rightarrow l_1 \quad l_i \land \tau_{i+1} \rightarrow l_{i+1} \quad l_{n-1} \land \tau_n \rightarrow \bot \)
• Requirement: \(\tau_1 \rightarrow l_1 \quad l_i \land \tau_{i+1} \rightarrow l_{i+1} \quad l_{n-1} \land \tau_n \rightarrow \bot \)

• Satisfied for: \(L_1 \preceq \ldots \preceq L_n \)
Results
Path Interpolation

- Requirement: \(\tau_1 \rightarrow I_1 \quad I_i \land \tau_{i+1} \rightarrow I_{i+1} \quad I_{n-1} \land \tau_n \rightarrow \perp \)

- Satisfied for: \(L_1 \preceq \ldots \preceq L_n \)
1 Background
 - Interpolation for Model Checking
 - Labeled Interpolation Systems

2 Contribution
 - Interpolant Strength in Model Checking
 - Simultaneous Abstraction: Requirements and Constraints
 - Path Interpolation: Requirements and Constraints

3 Conclusions
• Interpolant strength in symbolic model checking
• Interpolant strength in symbolic model checking
• Simultaneous abstraction, path interpolation
• Interpolant strength in symbolic model checking
• Simultaneous abstraction, path interpolation
 • Generation of multiple interpolants, additional requirements
Summary

- Interpolant strength in symbolic model checking
- Simultaneous abstraction, path interpolation
 - Generation of multiple interpolants, additional requirements
- Constraints on labeled interpolation systems
Summary

- Interpolant strength in symbolic model checking
- Simultaneous abstraction, path interpolation
 - Generation of multiple interpolants, additional requirements
- Constraints on labeled interpolation systems
Ongoing Work

- Necessary and sufficient conditions for labeled interpolation systems

Thanks for your attention!

verify.inf.usi.ch

S.F.Rollini (USI)
Ongoing Work

- Necessary and sufficient conditions for labeled interpolation systems
 - Path interpolation, simultaneous abstraction, state-transition interpolation, tree interpolation

Thanks for your attention!
Ongoing Work

- Necessary and sufficient conditions for labeled interpolation systems
 - Path interpolation, simultaneous abstraction, state-transition interpolation, tree interpolation
- Labeled interpolation systems w.r.t. semantical/syntactical features of interpolants
Ongoing Work

- Necessary and sufficient conditions for labeled interpolation systems
 - Path interpolation, simultaneous abstraction, state-transition interpolation, tree interpolation

- Labeled interpolation systems w.r.t. semantical/syntactical features of interpolants
 - Experimentation with FunFrog, eVolCheck, SAFARI model checkers
Ongoing Work

• Necessary and sufficient conditions for labeled interpolation systems
 • Path interpolation, simultaneous abstraction, state-transition interpolation, tree interpolation

• Labeled interpolation systems w.r.t. semantical/syntactical features of interpolants
 • Experimentation with FunFrog, eVolCheck, SAFARI model checkers

Thanks for your attention!
verify.inf.usi.ch
S.F. Rollini, O. Sery and N. Sharygina

Leveraging Interpolant Strength in Model Checking.

CAV 2012.
Example
Labeled Interpolation Systems

- \(A = \{pq, r\} \)
- \(B = \{pr, q\} \)
Example

Labeled Interpolation Systems

- \(A = \{pq, r\} \quad B = \{pr, q\}\)

\[
p, q, r \mapsto (b, b, b)
\]

\[
\begin{array}{c}
pq \\
pr \\
r
\end{array}
\]

\[
\begin{array}{c}
q r \\
r
\end{array}
\]

\[
\begin{array}{c}
q \\
q
\end{array}
\]

\[
\bot [(p \lor q) \land r]
\]
Example
Labeled Interpolation Systems

• $A = \{pq, r\}$ \hspace{1cm} $B = \{pr, q\}$

\[
p, q, r \mapsto (b, b, b) \quad \begin{array}{cc}
pq & pr \\
\hline
\bar{q}r & r \\
\hline
\bar{q} & q \\
\hline
\bot \left[(p \lor q) \land r \right]
\end{array}
\quad \begin{array}{cc}
pq & pr \\
\hline
\bar{q}r & r \\
\hline
\bar{q} & q \\
\hline
\bot \left[(p \land r) \lor \bar{q} \right]
\end{array}
\quad \begin{array}{cc}
p, q, r \mapsto (a, a, a)
\end{array}
\]
Example

Labeled Interpolation Systems

- \(A = \{ pq, r \} \quad B = \{ pr, q \} \)

\(p, q, r \mapsto (b, b, b) \)

\[
\begin{array}{c c c}
pq & pr \\
\hline
qr & r \\
\hline
\bar{q} & q \\
\hline
\bot & [(p \lor \bar{q}) \land r] \\
\end{array}
\]

\(p, q, r \mapsto (a, a, a) \)

\[
\begin{array}{c c c}
pq & pr \\
\hline
qr & r \\
\hline
\bar{q} & q \\
\hline
\bot & [(p \land r) \lor \bar{q}] \\
\end{array}
\]

- \((b, b, b) \preceq (a, a, a)\)
Example
Labeled Interpolation Systems

• \(A = \{ pq, r \} \quad B = \{ pr, q \} \)

\[
\begin{align*}
\text{p, q, r} & \mapsto (b, b, b) & \text{p, q, r} & \mapsto (a, a, a) \\
\text{pq} & \quad \text{pr} \\
\hline \\
\text{qr} & \quad r \\
\hline \\
\text{q} & \quad q \\
\hline \\
\perp \quad [(p \lor \overline{q}) \land r] & \\
\hline \\
\end{align*}
\]

• \((b, b, b) \preceq (a, a, a) \quad \implies \quad (p \lor \overline{q}) \land r \rightarrow (p \land r) \lor \overline{q}\)
Transition Relation Approximation
Simultaneous Abstraction

- BMC: iterative analysis \(k \)-length traces
Transition Relation Approximation
Simultaneous Abstraction

- BMC: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E
• BMC: iterative analysis k-length traces
 • Initial states S, abstract transition relation \hat{T}, error states E

• Check $S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k$
Transition Relation Approximation
Simultaneous Abstraction

- BMC: iterative analysis \(k\)-length traces
 - Initial states \(S\), abstract transition relation \(\hat{T}\), error states \(E\)

- Check
 \[S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k \land \text{SAT?} \]
Transition Relation Approximation

Simultaneous Abstraction

- BMC: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- Check $S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k$ SAT?

- Check $S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k$
Transition Relation Approximation
Simultaneous Abstraction

- BMC: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- Check $S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k$ SAT?
- Check $S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k$ UNSAT?
Transition Relation Approximation
Simultaneous Abstraction

- **BMC**: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- **Check** $S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k$ SAT?

- **Check** $S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k$ UNSAT?

- Extract interpolants
Transition Relation Approximation
Simultaneous Abstraction

- **BMC:** iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- Check
 \[S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k \leq \text{SAT?} \]

- Check
 \[S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k \leq \text{UNSAT?} \]

- Extract interpolants
 \[S \land I_0 \land I_1 \land \ldots \land I_{k-1} \land E^k \leq \text{UNSAT} \]
Transition Relation Approximation
Simultaneous Abstraction

- BMC: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- Check
 \[
 S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k \\
 \text{SAT?}
 \]

- Check
 \[
 S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k \\
 \text{UNSAT?}
 \]

- Extract interpolants
 \[
 S \land l_0 \land l_1 \land \ldots \land l_{k-1} \land E^k \\
 \text{UNSAT}
 \]

- Strengthen \hat{T}
Transition Relation Approximation
Simultaneous Abstraction

- BMC: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- Check

 $S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k$ SAT?

- Check

 $S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k$ UNSAT?

- Extract interpolants

 $S \land I_0 \land I_1 \land \ldots \land I_{k-1} \land E^k$ UNSAT

- Strengthen \hat{T}

 $\hat{T} \land I_0 \land I_1 \land \ldots \land I_{k-1} \leadsto \hat{T}$
Transition Relation Approximation
Simultaneous Abstraction

- BMC: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- Check
 $$S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k \text{ SAT?}$$

- Check
 $$S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k \text{ UNSAT?}$$

- Extract interpolants
 $$S \land l_0 \land l_1 \land \ldots \land l_{k-1} \land E^k \text{ UNSAT}$$

- Strengthen \hat{T}
 $$\hat{T} \land l_0 \land l_1 \land \ldots \land l_{k-1} \leadsto \hat{T}$$

- $$S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k \text{ UNSAT!}$$
Transition Relation Approximation

Simultaneous Abstraction

- BMC: iterative analysis k-length traces
 - Initial states S, abstract transition relation \hat{T}, error states E

- Check
 $$S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k \text{ SAT?}$$

- Check
 $$S \land T^0 \land T^1 \land \ldots \land T^{k-1} \land E^k \text{ UNSAT?}$$

- Extract interpolants
 $$S \land I_0 \land I_1 \land \ldots \land I_{k-1} \land E^k \text{ UNSAT}$$

- Strengthen \hat{T}
 $$\hat{T} \land I_0 \land I_1 \land \ldots \land I_{k-1} \leadsto \hat{T}$$

- $$S \land \hat{T}^0 \land \hat{T}^1 \land \ldots \land \hat{T}^{k-1} \land E^k \text{ UNSAT!}$$