Automata on Infinite Trees



Buchi Automata on Infinite Trees



Definition

A Biichi tree automaton over ¥ is A = (S, I, T, F'), where:
e S is a finite set of states,
e /| C S is a set of initial states,
o T:5 xY — 25%5 ig the transition relation,

o /' C S is the set of final states.



Runs

A run of A over a tree t : {0,1}* — X is a mapping 7 : {0,1}* — S such
that, for each position p € {0, 1}*, where ¢ = w(p), we have:

e if p=-c¢€then qe I, and

o if g; =m(pi), 1 =0,1 then {(qo,q1) € T(q,t(p)).

If 7 is a run of A and o is a path in ¢, let 7|, denote the path in 7

corresponding to o.

A run 7 is said to be accepting, if and only if for every path ¢ in ¢ we have:

inf(m,) N F # 0



Closure Properties

For every Biichi automaton A there exists a complete Biichi automaton A’

such that £L(A) = L(A').

Theorem 1 The class of Biichi-recognizable tree languages is closed

under union, intersection and projection.

Let A; = (S;, I;,T;, F;), i = 1,2, where S1 NSy = ().

Let A, = <Sl U Sy, I1 Uy, Ty UTs, Fy U F2>.



Closure Properties

Let An = (S,I,T, F) where:
® SZSl XSQ X{O,l,Q}
[ I:Il><12><{1}

e for any s,s1,s0 € S1, &', 87,8, € Sy, a,b € {0,1,2}:

((51,87,b),(s2,55,0)) € T((s,s,a),0)

iff (s1,80) € T(s,0), (s},s,) € T(s',0) and:

l.ifa=0o0r (a=1and s ¢ F}), then b=1
2. if (a=1and s € Fy) or (a=2and s & Fy), then b =2
3. ifa=2and s’ € Iy, then b =0

o FF=5x5x{0}



Emptiness of Biichi Tree Automata

Let A= (S,I,T,F) be a Biichi tree automaton where F' = {s1,...,sn},
and 7 : {0,1}* — S be a successful run of A on the tree t € 7 ().

For any s € S, and any u € {0,1}* such that w(u) = s, let
di ={w € u-{0,1}* | 7(v) € F, for all u < v < w}

By Ko6nig’s lemma, dI is finite for any u € {0, 1}*.

Let t7 be the restriction of ¢ to d. Let

Ts = {t7 | m is a successful run of A on t}



Emptiness of Biichi Tree Automata

If = (s1,...,8m):

LA) = | Ty 5 (Tsy, ... Ty, )

so€el

Conversely, the expression above denotes a Biichi-recognizable tree

language.

Let A= (S,I,T,F) be a Biichi tree automaton. For each s € S let T be
the recognizable tree language defined above. Eliminate from S (and T))
all states s such that Ty, = (), and let S’ be the resulting set of states.

We claim that L(A) #0 < S'NI #0.



The Complement Problem

Let X = {a,b}, To = {t € T¥(X) | some path in ¢ has infinitely many a’s}

T is Biichi recognizable.

Let A = ({so, S1,Sa,Sb},{50},T,{S1,Sa}), where T is defined by:

a(s0,a6) — {(51,84),(Sa,51)}
b(s0,a6) — {(s1,56); (Sp,51)}
a(s1) — {(s1,81)}
b(s1) — {(s1,51)}



The Complement Problem

Let 71 =T%(X)\ 7o = {t € 7¥(X) | all paths in ¢t have finitely many a’s}.

We show that 77 cannot be recognized by a Biichi tree automaton.

Ezxercise 1 I = {sg,s1}, F ={s1} and



The Complement Problem

Let T, : {0,1}* — X be the language of trees:

)
o (p) = ¢ a if p € {6,1™0,1"™01™20,...,1™01™20...1™0 | mq,...m, € N}
n\P) =

b otherwise

\

Obviously, T;,, C 71, for all n € N.

Suppose there exists a Biichi automaton A = (S, I, T, I') with k states, s.t.
L(A) =7T;. Let m be the accepting run of A over ;1. Then there exist:

e my > 0 such that 7(1") =51 € F
e my > 0 such that 7(1™101"2) = 55 € F
o ...

There exists a path ¢ in ¢, and u < v < w < o, such that
m(u) =m(w) =s € F and t,,(v) =a. Then m =ry 519573, and ry -5 757 is

a successful run on ¢; - g5, which contains a path with infinitely many a.



Muller Automata on Infinite Trees



Definition

A Miiller tree automaton ¥ is A = (S, I, T, F), where:
e S is a finite set of states,
e /| C S is a set of initial states,
o T:5 %% — 25%35 ig the transition function,

o F C 27 is the set of accepting sets.

A run 7 of A over t is said to be accepting, iff for every path o in t:

inf(m,) € F



Closure Properties

The class of Miiller-recognizable tree languages is closed under union and

Intersection.

For union, the proof is exactly as in the case of Biichi automata. For A,

the set of accepting sets is the union of the sets F;, 1 = 1, 2.

For intersection, let An = (S1 X S, [1 x Is, T, F), where:
o ((s1,5)),(s2,85)) € T((s,5),0) iff (s1,s2) € T'(s,0) and
(s},85) € T(s',0), and
o F={G e 51 x5 | pri(G) € F; and pra(G) € Fa}, where:
— pri(G) ={s €S | 3¢ . (s,) € G}, and
— pra(G) ={s € Sy | ' . (¢, s) € G}.



Rabin Automata on Infinite Trees



Definition

A Rabin tree automaton ¥ is A = (S,I,T,8), where:
e S is a finite set of states,
e /| C S is a set of initial states,
o T:5 %% — 25%35 ig the transition function,

e O={(Ny,P1),...,(P,, Ny} is the set of accepting pairs.

A run 7 of A over t is said to be accepting, if and only if for every path o

in t there exists a pair (N;, P;) € € such that:

inf(m,) N N; =0 and inf(m,) N FP; # ()



Biuchi, Muller and Rabin

For every Biichi tree automaton A there exists a Rabin tree automaton B,
such that £(A) = L(B), but not viceversa.

For every Miiller tree automaton A there exists a Rabin tree automaton
B, such that L(A) = L(B), and viceversa.



The Rabin Complementation Theorem

Theorem 2 (Rabin ’69) The class of Rabin-recognizable tree languages

15 closed under complement.

The class of Rabin-recognizable tree languages is closed under union and

Intersection.



Emptiness of Rabin Automata

Given an alphabet ¥, an infinite tree t € 7%(X) is said to be reqular if
there are only finitely many distinct subtrees t,, of ¢, where u € {0, 1}*.

Example 1 The infinite binary tree f(g(f(...), f(...)),g9(f(...), f(...)))

s reqular. O

Theorem 3 (Rabin ’72)
1. Any non-empty Rabin-recognizable set of trees contains a reqular tree.

2. The emptiness problem for Rabin tree automata is decidable.



Reduction to empty alphabet

Let A= (S,I,T,8) be a Rabin tree automaton over ¥, such that
,C(A) 7é (Z), where () = {<N1, P1>, e o ey <Nn, Pn>}

Let A/ = (S x 3,1 xX,T Q) where:
¢ <(81701>7 (82702>> = T,((870)> it <81782> = T(870>7 and 01,02 € .

o O/ ={(Ny xZ, P x%),....,(N, xZ, P, x Z)}.

The successful runs of A" are pairs (m,t), where t € L(A), and 7 is a

successful run of A on ¢t.



Regular successful runs

For any Rabin tree automaton A, there exists a Rabin tree automaton A’
with one initial state such that £(A) = L(A").

Consider a Rabin tree automaton A = (S, so, T, 2) over the empty

alphabet, and let m be a successful run of A.

Claim 1 If A has a successful run, A has also a reqular successful run.

A state s € S is said to be live if s # sg and (s1, s2) € T'(s) for some

S1,S9 € S, where either s; # s or sg # s.

By induction on n = the number of live states in A.



Regular successful runs

If n=0, m(e) = sp and w(p) = s, for all p € dom(7w), and s € S non-live.

Case 1 If some live state in A is missing on 7, apply the induction

hypothesis.

Case 2 All states of A appear on m, and there is a position u € {0,1}*

such that w(u) = s is live, but some live state s’ does not appear in 7.

Let 71 = 7 \ my, and my = m,. Both m and s are runs of automata with
n — 1 live states, hence there exists successful regular runs 7; and 75 of

these automata. The desired run is 7 -5 5.



Regular successful runs

Case 3 All live states appear in any subtree of m. Let ¢ be a path in 7
consisting of all the live states appearing again and again, and only of the

live states, with the exception of w(€). Q: Why does o exist?

There exists (N, P) € €, such that inf(o) N N = () and inf(c) N P # (.

Then N contains only non-live states.

Let s € inf(o) N P and u, v be the 1% and 2™ positions such that

o(u) =o(v) =s.

Let 71 = 7 \ my, and my = m, \ m,. Both 7 and s are runs of automata

with n — 1 live states, hence there exists successful regular runs 7«7 and

of these automata. The desired run is 7] -5 75"



The Emptiness Problem

Let A be an input-free Rabin tree automaton with n live states.

We derive A,,_1,A,—2,...,Ap from A, having n — 1,n — 2,...0 live states.

If A has a successful run, then it it has a regular run, composed of runs of

An—laAn—Qa s 7AO'

So it is enough to check emptiness of A,,_1, A,—2,..., Ap.



Rabin Automata, SkS and SwS



Defining infinite paths

We say that a set of positions X is linear iff the following holds:

linear(X) @ (Ve,y . X(2) AN X(y) —mz <yVy<x)

X is a path iff:

path(X) : linear(X)AVY .linear(Y)ANX CY - X =Y



From Automata to Formulae

Let A= (S,I,T,(2) be a Rabin tree automaton, where S = {s1,...,5,}.
Let Y = {V1,... ,Y,} be set variables.

If X denotes a path, state ¢ appears infinitely often in X iff:

infi(X) : V. X(x) = Jy .2 <yAXy) ANYi(y)
The formula expressing the accepting condition is:

Po(Y) : VX . path(X) — \/ ( A —infi(x) n\/ z’nfz-(X))

(N,PYeQ) s;€N s;€P



Decidability of S2S

Theorem 4 Given an alphabet 3, a tree language L C T (X)) is definable
in 528 iff it 1s recognizable.

Corollary 1 The SAT problem for S2S5 is decidable.



Obtaining Decidability Results by Reduction

Suppose we have a logic L interpreted over the domain D, such that the

following problem is decidable:

for each formula ¢ of £ there exists m € D such that m = ¢

Then we can prove the same thing for another logic £ interpreted over D’
iff there exists functions A : D' — D and A : £ — L such that for all
m’ € D' and ¢’ € £ we have:

m ¢ = Am) = A(Y)



Decidability of SwS

Every tree t : N* — ¥ can be encoded as t' : {0,1}* — X.

Let D = {¢} U {01™101720...1%0 | k> 1,1 < i < k}.

ni,...,npeN

Embedding the domain of SwS into S2S:

D(x) : q2Vy. (z<y)ANz=2zV
so(2) SaxAVy . z<yAsoly) <z — Iy .y=s(y)



Decidability of SwS

If p = 01101720 .. 170, let f;(p) = 017101720. .. 1™ (010

r=1y : D@)ANDy) ANz =<y

Define the relation x <p y ifft x € D and y = x01", for some n € N.

Define fo, f1, f2,... by induction:
e fo(x)=y : Dx)ADy)Ne<pyAVz.x<pz—y=12

o firi(z)=1y : D(:B)/\D(y)/\ajgpy/\v,z.:E§Dz/\/\0§k§iz7é
fe() =y =12



