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Obligation Games

We consider games where the winning condition for Player 0 (on the
play) is

» a Boolean combination of reachability conditions

» equivalently: a condition on the set Occ

Standard form: Staiger-Wagner winning condition, using
F={F,...,F}
Player 0 wins play p iff Occ(p) € F. We call these games obligation

games (or Staiger-Wagner games).



Example

S = {81782783} F= {{81782783}}

s (s s

No winning strategy is positional.

There is a finite-state winning strategy.



Weak Parity Games

Method for solving Staiger-Wagner games:
1. Solve weak parity games.
2. Reduce Staiger-Wagner games to weak parity games.
A weak parity game is a pair (G, p), where
» G = (5,85, F) is a game graph and
» p: S —{0,...,k} is a priority function mapping every state in S
to a number in {0, ..., k}.
A play p is winning for Player 0 iff the minimum priority occurring in

p is even: mmseOCC(p)p(s) is even
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Weak Parity Games

Theorem
For a weak parity game one can compute the winning regions Wy, Wy

and also construct corresponding positional winning strategies.

Proof.

Let G = (S, So, E') be a game graph, p: S — {0,...,k} a priority
function. Let P, = {s € S | p(s) = i}.

First steps if Py # (: We first compute Ay = Attro(F), clearly from
here Player 0 can win.

In the rest game, we compute A; = Attri(P; \ Ag) from here Player 1

can win.



General Construction

Aim: Compute Ag, A1,... Ag
Let G; be the game graph restricted to S\ (Ao U... A;_1).
Attrg ‘(M) is the O-attractor of M in the subgraph induced by G;

Ap = Attro(Po)
A1 = AttI‘lGl (AO \ Pl)
fori>1:

Attr§ (P \ (AgU ..U A; 1)) if i is even

Ai =
Attr{ (P \ (AgU..UA;_qy) ifiis odd



Correctness

Correctness Claim:

Wy = U A; and W7 = U A;
i even i odd
and the union of the corresponding attractor strategies are positional
winning strategies for the two players on their respective winning
regions.

Prove by induction on j = 0,..., k the following:

U A; C Wy and U A, C W
i=0..j,5 even i=1..5, odd



Correctness (cont.)

Base:
» i=0: Ag = Attro(Py) C W)
> i=1: A = Attl"l(Pl \Ao) cC Wi

Induction step:

» ieven: Consider play p starting A; that complies to attractor
strategy.

» Case 1: p eventually leaves A; to some A; (from a Player-1 state),

which j < ¢ and even, then Player 0 wins by induction hypothesis.
» Case 2: p visits P;, then we need to show that p visits only states
with p(s) > 4. Consider a state s that visits P;, then

> if s € Sp, then not all edges lead to states with lower priority,

otherwise s € A; for some j < i. Contradiction.



Correctness (cont.)

» Case 2 (cont.):
> if s € S1, then all edges lead to states with priority > i. Any edge
to a lower priority must lead to A; with even j (Case 1). If there
were edges to states s’ with priority j < ¢ and j odd, then s’

would already be in A;. Contradiction.

» i odd: switch players



Obligation/Staiger-Wagner to Weak-Parity Games

» How to translate a Staiger-Wagner automaton to Weak-Parity

automaton?
» Idea: record visited states during a run
» Record set: RC S

» Question: How to give priorities?



Record Sets and Priorities

Assume automaton with states {sg, s1, s2}.

Consider possible record sets:

{s0,51, 52}

N

{s0,s1}  {s0,s2}  {s1,s2}

P

{so} {s1} {s2}

NP

Assume the following run sy, sg, s1, Sg, S2, ... and the acceptance

condition F' = {{so, s1}, {s0, s1,s2}}. How to assign priorities?



Record Sets and Priorities

F = {{so0,s1},{s0,s1,s2}}. How would you assign priorities?

ylasz}i 0or1
{80,81}§2, 82}§2’ s} 3 2o0r3
{s0} : 5 {s1}:5 {s2}:5 4orb

N

0 d.c.



From Staiger-Wagner to Weak Parity Automata

Given a deterministic Staiger-Wagner automaton A = (S,I,T, F), we

can construct an equivalent weak parity automaton A’ = (8", I', T", p)

as follows:
S’ =5 x2°%
I = (1,{I})
T'((s,R),a) := (T(s,a),RU{T(s,a)}
2-|R| itReF
p((s, R)) =25 -

2.|R|—-1 ifR&F



Idea of Game Reduction

We want to solve Staiger-Wagner games. We use a reduction to weak
parity games (and the positional winning strategies of weak parity
games).

Reduction will transform a game (G, ¢) into a game (G’, ¢') such that

usually
» G is (usually) larger than G

» ¢ is simpler than ¢ (so the solution of (G’, ¢') is simpler than
that of (G, ¢))

» from a solution of (G’, ¢') we can construct a solution of (G, ¢).

Concrete application: Transform Staiger-Wagner game into a weak

parity game over a larger graph (from S proceed to S x 2°)



Game Reduction

Let G = (S, 50, E) and G' = (5, 5)), E') be game graphs with winning
conditions ¢ and ¢, respectively.
(G, ¢) is reducible to (G, ¢') if:
1. 8" =5 x M for a finite set M and S, = Sy x M
2. Each play p = sgs1... over (G is translated into a play
p' = s,s) ... over G' by

» a function f: S — S x M (the beginning of p').

» forall states (m,s) € S x M in G’ and all states s’ € S in G, if
there exists an edge (s,s’) € F, then there is a unique m’ with
((m,s),(m',s")) e E

» forall edges ((m,s),(m/,s’)) € E' in G’ there is an edges
(s, e Ein G

3. For all plays p and p’ according to 2.: p € ¢ iff p/ € ¢/



Application of Game Reduction

Theorem

Suppose (G, @) is reducible to (G',¢") with extension set M, initial
function g, and G and G’ defined as before. Then, if Player 0 wins in
(G',¢) from g(s) with a memoryless winning strategy, then Player 0
wins in (G, ¢) from s with a finite-state strategy.

Idea: Given a memoryless winning strategy f : S, — S’ from g(s) for
Player 0 in (G', ¢'), we can construct a strategy automaton
A = (M, mg,d,\) for Player 0 in (G, ¢).



Obligation/Staiger-Wagner Games

Theorem
Given a Staiger-Wagner game (G, ¢), one can compute the winning

regions of Player 0 and 1 and corresponding finite state strategies.

Proof.
We can apply game reduction with (G’, ¢’) as follows:

G’ = (5,5}, E)

S’ =29%x 8

((R,s),(R,s")) e E') iff (s,s') e E,R = RU{s'}
9(s) = ({s},s)

2. |R| if Peg
p((R,s)) :2~S{
2. |R|-1 ifP¢¢



Exponential-Size Memory

Theorem
There is a family of Staiger- Wagner games over game graphs

G1,Go,Gs, ... which grow linearly in n such that
> Player 0 wins from a certain initial vertex of Gy,

> any finite-state strategy for Player 0 needs at least 2™ states

Winning condition:

¢={p|Vi=1...n:i€ Occ(p) < i € Occ(p)}



Exponential Memory (cont.)

Claim:

Over G, there is an automaton winning strategy for Player 0 from
vertex so with a memory of size 2. (Remember the visited vertices 1,
for the appropriate choice from vertex s{, onwards.)

Each automaton winning strategy for Player 0 from sg in G,, has a
memory of 2" many states.

Proof.

Assume |states| < 2" is sufficient.

Then two play prefixes u # v exist leading to the same memory states
at sj. The rest r of the play is then the same after v and v.

One of the two player ur, vr is lost by Player 0. Contradiction.



Exercise

1. Consider the game graph shown below. Let the winning
condition for Player 0 be Occ(p) ={1,2,3,4,5,6,7}.
1. Find the winning region for Player 0 and describe a winning
strategy

2. Show that there is no positional winning strategy for Player 0.




Exercise

2. Compute the winning regions and the corresponding positional

winning strategies for Player 0 and 1 in this weak-parity game.

Priority 4 Pricrity 3




Exercise

3. A winning strategy is called uniform if it is a winning strategy
from every winning state in the game. Let (G, p) be a weak
parity game and let Wy be the winning region of Player 0. For all
s € Wy let fs be a positional winning strategy from s for Player
0. Construct a uniform winning strategy f from the strategies f

meaning that for every s € Wy there is a t € Wy, s.t. f(s) = fi(s).



