Linear Temporal Logic



Safety vs. Liveness

e Safety : something bad never happens

A counterexample is an finite execution leading to something bad

happening (e.g. an assertion violation).

e Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good

happens (e.g. the program does not terminate).



Verification of Reactive Systems

e (lassical verification a la Floyd-Hoare considered three problems:

— Partial Correctness :
{o} P {y} iff for any s = ¢, if P terminates on s, then P(s) &=

— Total Correctness :
{o} P {4y} iff for any s = ¢, P terminates on s and P(s) = ¢

— Termination :

P terminates on s

e Need to reason about infinite computations :
— systems that are in continuous interaction with their environment
— servers, control systems, etc.

— e.g. “every request is eventually answered”



Reasoning about infinite sequences of states

e Linear Temporal Logic is interpreted on infinite sequences of states

e Fach state in the sequence gives an interpretation to the atomic

propositions

e Temporal operators indicate in which states a formula should be

interpreted

Example 1 Consider the sequence of states:

{p,a} {-p,~q} {-p,q} {p,q})”

Starting from position 2, q holds forever. O



Kripke Structures

Let P ={p,q,r,...} be a finite alphabet of atomic propositions.

A Kripke structure is a tuple K = (S, so, —, L) where:

e S is a set of states,
o sy € S a designated wnitial state,

o — : S x Sisa transition relation,

o L:S — 2% is a labeling function.



Paths in Kripke Structures

A path in K is an infinite sequence m : sg, S1, S2 ... such that, for all

1 > 0, we have s; — s;11.

By 7(¢) we denote the i-th state on the path.

By m; we denote the suffix s;, s;11,Si49....

inf(7m) = {s € S | s appears infinitely often on 7}

If S is finite and 7 is infinite, then inf(7) # ().



Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:
e atomic proposition symbols p,q,r,...,
e boolean connectives =, V, A\, —, <,

e temporal connectives (), 0,0, U, 'R.

The set of LTL formulae is defined inductively, as follows:
e any atomic proposition is a formula,

e if ¢ and 1 are formulae, then = and p e ¢, for ¢ € {V, A, —, <} are

also formulae.

e if ¢ and v are formulae, then Oy, Op, Oy, WUy and R are

formulae,

e nothing else is a formula.



Temporal Operators

e () isread at the next time (in the next state)

e 0 is read always in the future (in all future states)

e < is read eventually (in some future state)

e /[ is read until

e R is read releases



Linear Temporal Logic: Semantics

K,mEp < p € L(x(0))
KirmE-p <+ K,m o
KrtEeANYy <~ K,m=pand K,7m =1
K.r=Qp <« K,m = ¢
K, 7= o) <= there exists k € N such that K, 7 = 1

and K,m, =g forall0 <i<k

Derived meanings:
KrnEOp <— K,mE= TUyp
K,mE=Op <= K,mE -0
K.mlE¢RYy <= K7 (-pU—y)



Examples

e p holds throughout the execution of the system (p is invariant) : Op
e whenever p holds, ¢ is bound to hold in the future : O(p — <g)

e p holds infinitely often : O3p

e p holds forever starting from a certain point in the future : ¢Op

e O(p — (O(—qUr)) holds in all sequences such that if p is true in a
state, then ¢ remains false from the next state and until the first state

where 7 is true, which must occur.

e pRq : g is true unless this obligation is released by p being true in a

previous state.



LTL = FOL

Theorem 1 LTL and FOL on infinite words have the same expressive

power.

From LTL to FOL:

Tr(qg) = Pq(t)
Tr(-~p) = —Tr(p)
Tr(pA) = Tr(p) NTr(y)
Tr(Qy) = Tr(p)t +1/1]
Tr(eUy) = Fz. Tr()lz/t]AVy .y <z—Tr(e)ly/t]

The direction from FOL to LTL is done using star-free sets.



LTL < S1S

Definition 1 A language L C X% is satd to be non-counting iff:

InoVn > nogVu,v € VB € ¥ L w"f e L <— w" g e L

Example 2 0*1% is non-counting. Let ng = 2. We have three cases:
1. u,v € 0" and g € 0*1% :
Vn>ng . uw"pg el
2. ue 0", vell” and B € 1% :

Vn>ng . w"B &L

3. ue0*1*, vel” and B € 1% :

Vn >ng . uw"pB el



LTL < S1S

Conversely, a language L C > is said to be counting iff:

VnoIn > noJu,v € ¥*3IB € ¥ . (w"B & LAuww" ™ 3 € L)v(un"B € LAuww™ ™3 ¢ L)

Example 3 (00)*1% is counting.

Given ng take the next even number n > ng, u =€, v =0 and g = 1%.
Then uv™3 € (00)*1% and wv™ ™3 & (00)*1¢. O



LTL < S1S

Proposition 1 FEach LTL-definable w-language s non-counting.

dngVn > noVu,v € X*Vg € X¥ . w"f = ¢ <~ uv”“ﬂ =

By induction on the structure of ¢ :
e © =aq : choose ng = 1.
e © = —) : choose the same ng as for .

e © =11 ANy : let ny for 11 and ns for 1o, and choose

ng = max(ni, ng).



LTL < S1S

e o =) :let ny for ¢ and choose ng = ni + 1.
— we show Vn > ng . (w"B); E ¢ = (w"T18); E

— case u # €, i.e. u=au :

(au'v"B)1 ¢ = V"B EY =

ulvn—Hﬁ ‘: w — (au’vn+1ﬂ)1 ‘: ¢

—caseu=-¢, v=av :

(a")"B)1 v <= (@) By =

V(@ )"BEY = (a)"B) ¢



LTL < S1S

o = Y1UUYy : let ny for 11 and ngy for Yo, and choose
ng = max(ni,ng) + 1.

— we show Vn > ng . wv" B = Yl = w3 = Pildahs

— we have (wv"8); =192 and Vi < j . (uwv"f3); = 1 for some j > 0
— case j < |ul: (wv™T1B); E e and Vi < j . (w1 B3); =4y

— case j > |ul: let j/ = j + |v|

« (w1 B) = (w"B); E o
« for all Jul + |v| <@ <j+v| . (W3); = (w"B);_py E U1
x for all i < |u| + |v| . (wv)v"B); = Y1 <= ((uwv)v18); =y

— the direction < is left to the reader.

Theorem 2 LTL is strictly less expressive than S15.



LTL Model Checking



System verification using LTL

e Let K be a model of a reactive system (finite computations can be

turned into infinite ones by repeating the last state infinitely often)

e Given an LTL formula ¢ over a set of atomic propositions P,
specifying all bad behaviors, we build a Biichi automaton A, that

accepts all sequences over 27 satisfying .

Q: Since LTL C S18S, this automaton can be built, so why bother?

e Check whether £(A,) N L(K) = (. In case it is not, we obtain a

counterexample.



Generalized Buchi Automata

Let ¥ = {a,b,...} be a finite alphabet.

A generalized Biichi automaton (GBA) over ¥ is A = (S,I,T,F), where:
e S is a finite set of states,
e /| C S is a set of initial states,
o I'C S x> xS isa transition relation,

o F={F,...,F,} C2%is aset of sets of final states.

A run 7 of a GBA is said to be accepting iff, for all 1 <7 < k, we have

inf(7) N F; # ()



GBA and BA are equivalent

Let A= (S,I,T,F), where F = {Fy,..., Fy}.

Build A’ = (S, I, T', F'):
o S'=5x{1,... .k},
o I'=1x{1},
o ((s,i),a,(t, 7)) € T"iff (s,t) € T and:
_j=iifs¢F,
— j=(i mod k) +1if s € F;.

o F,:F1><{1}.



The idea of the construction

Let K = (5, sg,—, L) be a Kripke structure over a set of atomic
propositions P, m : N — § be an infinite path through K, and ¢ be an
LTL formula.

To determine whether K, 7 = ¢, we label m with sets of subformulae of ¢

in a way that is compatible with LTL semantics.



Closure

Let ¢ be an LTL formula written in negation normal form.

The closure of ¢ is the set Cl(p) € 26UETL).

® C Cl((p)

e Oy € Cl(p) = ¢ € Cl(p)
o Y1 ey € Cl(p) = Y1,y € Cl(p), for all e € {A,V,U,R}.

Example 4 Cl(Op) = Cl(TUp) = {p,p, T }O

Q: What is the size of the closure relative to the size of ¢ 7



Labeling rules

Given 7 : N — 27 and o, we define 7 : N — 2¢1#) ag follows:

e for pec P, if pe 7(i) then p € n(i), and if —p € 7(¢) then p & 7(7)

o if Y1 Ay € 7(2) then ¥y € 7(¢) and 19 € 7(4)

o if Y1 Vo € 7(4) then ¥y € 7(1) or 19 € 7(4)



Labeling rules

Uy = PV (oA O(pUr))
YRy = YA (pVO(@RY))

o if Oy € 7(i) then ¢y € 7(2 + 1)

o if y1U1py € T(i) then either ¥y € 7(i), or Y1 € 7(7) and
ViUYy € T(i 4+ 1)

o if YyRipy € 7(i) then ¥y € 7(¢) and either ¥; € 7(¢) or
1Ry € T(i + 1)



Interpreting labelings

A sequence 7 satisfies a formula ¢ if one can find a labeling 7 satisfying:

e the labeling rules above

e v c7(0), and

o if y1Urpo € 7(i), then for some j > i, 1o € 7(j) (the eventuality

condition)



Building the GBA A, = (S,[,T,F)

The automaton A, is the set of labeling rules + the eventuality

condition(s) !
e ¥ = 27 is the alphabet
o S C 20U¥) guch that, for all s € S :
— 1 N2 €s= 1 €sand Yy €5
— Y1V €8S = Y1 €ESOr Ya €S
o [={seS|pes}
e (s,a,t) €T iff:
—forallpeP,pes=pe€a,and pEs=pé<a,

- OYes=vYet,
— 1UYy € s = Py € s or |11 € s and Y1l € 1]
— PRy € s = 19 € s and [1h1 € s or Y1 Ry € t]



Building the GBA A, = (S,[,T,F)

e for each eventuality ¢pUy € Cl(p), the transition relation ensures that

this will appear until the first occurrence of

e it is sufficient to ensure that, for each ¢ly € Cl(p), one goes
infinitely often either through a state in which this does not appear,
or through a state in which both ¢lf1) and 1) appear

o let o1UY, ... 0, UY, be the “until” subformulae of ¢

F=A{F,...,F,}, where:
F,={se S| ¢p;Up; € s and ¢; € s or ¢p;UY; & s}

for all 1 <17 <n.



