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Hybrid (Dynamical) Systems

Example: Thermostat

X < 18 0< x<30

x > 22 ¢

in addition: updates

General motivation: software interacting with physical environment
(cyber-physical systems)

But: software more complex than finitely many modes
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» Our method for safety verification of hybrid systems

» Speculation: More interesting discrete behavior?
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HSolver

Tool for safety verification of hybrid systems
(hsolver.sourceforge.net,[Ratschan and She, 2007])

Unsafe

Input:
» Hybrid system with
> set of initial states nit

» set of unsafe states

Output:

» If terminates (printing "safe") then there is no error trajectory
(i.e., trajectory from initial to unsafe states).

> Might run forever.
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(A\linear ODEs vs. non-linear hybrid automaton!)
» Unbounded verification: formally verifies absence of error
trajectory of arbitrary length
» Correctness: No incorrect result due to floating point
rounding or convergence to non-global optima
» Scalability: Even if verification fails (e.g., for high-dimensional
examples), can compute abstractions
Weaknesses:
» Does not yet exploit special cases (ongoing work,
experimental features [Dzetkuli¢ and Ratschan, 2009])
» Only restricted method for finding error trajectories [Ratschan
and Smaus, 2009]
» Current implementation: does not scale wrt. number of
discrete modes
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Abstractions in HSOLVER
Box grid [Kuipers, 1995]

2-dimensional, 1 mode:
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Abstractions in HSOLVER
Box grid [Kuipers, 1995]

2-dimensional, 1 mode:

7T 7 7

Safety of abstraction implies safety of original system

refinement: split a box into two
increases abstraction size: only use as last resort!

6
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Algorithm for Abstraction Pruning
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Algorithm for Abstraction Pruning

N
_—

For each box marked as initial:
over-approximate set of states reachable from an initial state
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Algorithm for Abstraction Pruning

I eiaau
]

If empty set, remove initiality mark

8/16



Algorithm for Abstraction Pruning
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while some new states reachable through a transition,
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Algorithm for Abstraction Pruning

/

u

remove unconfirmed transitions
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Algorithm for Abstraction Pruning

Replace boxes by new ones
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Further Issues

Error trajectory: starts in initial states, leads to unsafe states

Hence: apply pruning algorithm also backward in time

16



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time

Incrementality between splits, forward/backward phases

16



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time
Incrementality between splits, forward/backward phases

Many possibilities concerning heuristics/widening strategies.



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time
Incrementality between splits, forward/backward phases
Many possibilities concerning heuristics/widening strategies.

Method can be instantiated
with arbitrary reachability computation algorithm



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time
Incrementality between splits, forward/backward phases
Many possibilities concerning heuristics/widening strategies.

Method can be instantiated
with arbitrary reachability computation algorithm
Our implementation:

» Interval constraint propagation [Benhamou and Granvilliers,
2006] +

» algebraization of ODEs [Hickey, 2000, Ratschan and She,
2007]
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How to Get Rich?

What about more interesting discrete behavior?

For example:
Instead of finitely many modes,
variables over various data types,
evolving according to computer program?

Communication between program and differential (in)equations?
Program can explicitly switch differential (in)equations

Program can read and write continuous variables
(abstracts from A/D conversion)

How to match discrete to continuous time?

For each program statement interval bound on duration?
(may be [0,0])

10/16
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Previous Work

HybridFluctuat (Bouissou, Goubault, Putot et. al.)
Similar model for interaction software - environment.
Verification by symbolic co-simulation

Interval based ODE integrator (i.e., good for deterministic systems,
only limited non-determism)

Bounded time

Does not exploit property at hand

11/16
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Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.
Result might be well-known, might be completely useless etc.
State space:  (program counter + values of variables)

Abstract states: A C 29

v

Split(a)= (a1, ..., ak) st. Ujep, yai=a

InitReach(a) s.t. InitReach(a) 2
{x€aloy— -+ — ok =x,01 initial, 01 € a,...,0 € a}
Reach(aj,, a): Reach(aj,,a) 2

{XEa’(fl — -t > O = X,01 € ajp,02€ a,...,0k Ea}
Hp s.t. (alLJag)ﬂb C agWpa C b

» C s.t. a1 C ap implies a1 C a»

v

v

v
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Algorithm for Abstraction Pruning

/

N
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Boxes now represent elements of a chosen class A of subsets of Q2
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Conclusion

» Combined algorithm?
» Which class of abstract states A?

> Is all of this anyway completely nonsense?
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