Verification of
Mixed Discrete-Continuous Systems

Stefan Ratschan

Institute of Computer Science
Czech Academy of Sciences

July 21, 2010

/16



Hybrid (Dynamical) Systems

Example: Thermostat

X < 18 0< x<30

x > 22

/16



Hybrid (Dynamical) Systems

Example: Thermostat

x > 22

/16



Hybrid (Dynamical) Systems

Example: Thermostat

X < 18 0< x<30

x > 22

in addition: updates

/16



Hybrid (Dynamical) Systems

Example: Thermostat

X < 18 0< x<30

x > 22 ¢

in addition: updates

General motivation: software interacting with physical environment
(cyber-physical systems)

16



Hybrid (Dynamical) Systems

Example: Thermostat

X < 18 0< x<30

x > 22 ¢

in addition: updates

General motivation: software interacting with physical environment
(cyber-physical systems)

But: software more complex than finitely many modes



Talk Outline

» Our method for safety verification of hybrid systems

16



Talk Outline

» Our method for safety verification of hybrid systems

» Speculation: More interesting discrete behavior?

16



HSolver

Tool for safety verification of hybrid systems
(hsolver.sourceforge.net,[Ratschan and She, 2007])

4/16


hsolver.sourceforge.net

HSolver

Tool for safety verification of hybrid systems
(hsolver.sourceforge.net,[Ratschan and She, 2007])

Input:
» Hybrid system with
» set of initial states

» set of unsafe states

4/16


hsolver.sourceforge.net

HSolver

Tool for safety verification of hybrid systems
(hsolver.sourceforge.net,[Ratschan and She, 2007])

Unsafe

Input:
» Hybrid system with
> set of initial states nit

» set of unsafe states

Output:

» If terminates (printing "safe") then there is no error trajectory
(i.e., trajectory from initial to unsafe states).

> Might run forever.

/16


hsolver.sourceforge.net

Characteristics of HSOLVER
Highlights:

/16



Characteristics of HSOLVER
Highlights:
» General inputs: non-linear differential equations/inequalitions,
non-linear jumps
(A\linear ODEs vs. non-linear hybrid automaton!)

5/16



Characteristics of HSOLVER
Highlights:
» General inputs: non-linear differential equations/inequalitions,
non-linear jumps
(A\linear ODEs vs. non-linear hybrid automaton!)
» Unbounded verification: formally verifies absence of error
trajectory of arbitrary length

16



Characteristics of HSOLVER
Highlights:

» General inputs: non-linear differential equations/inequalitions,
non-linear jumps
(A\linear ODEs vs. non-linear hybrid automaton!)

» Unbounded verification: formally verifies absence of error
trajectory of arbitrary length

» Correctness: No incorrect result due to floating point
rounding or convergence to non-global optima

5/16



Characteristics of HSOLVER
Highlights:

» General inputs: non-linear differential equations/inequalitions,
non-linear jumps
(A\linear ODEs vs. non-linear hybrid automaton!)

» Unbounded verification: formally verifies absence of error
trajectory of arbitrary length

» Correctness: No incorrect result due to floating point
rounding or convergence to non-global optima

» Scalability: Even if verification fails (e.g., for high-dimensional
examples), can compute abstractions

5/16



Characteristics of HSOLVER
Highlights:
» General inputs: non-linear differential equations/inequalitions,
non-linear jumps
(A\linear ODEs vs. non-linear hybrid automaton!)
» Unbounded verification: formally verifies absence of error
trajectory of arbitrary length
» Correctness: No incorrect result due to floating point
rounding or convergence to non-global optima
» Scalability: Even if verification fails (e.g., for high-dimensional
examples), can compute abstractions
Weaknesses:
» Does not yet exploit special cases (ongoing work,
experimental features [Dzetkuli¢ and Ratschan, 2009])

5/16



Characteristics of HSOLVER
Highlights:
» General inputs: non-linear differential equations/inequalitions,
non-linear jumps
(A\linear ODEs vs. non-linear hybrid automaton!)
» Unbounded verification: formally verifies absence of error
trajectory of arbitrary length
» Correctness: No incorrect result due to floating point
rounding or convergence to non-global optima
» Scalability: Even if verification fails (e.g., for high-dimensional
examples), can compute abstractions
Weaknesses:
» Does not yet exploit special cases (ongoing work,
experimental features [Dzetkuli¢ and Ratschan, 2009])
» Only restricted method for finding error trajectories [Ratschan
and Smaus, 2009]

5/16



Characteristics of HSOLVER
Highlights:
» General inputs: non-linear differential equations/inequalitions,
non-linear jumps
(A\linear ODEs vs. non-linear hybrid automaton!)
» Unbounded verification: formally verifies absence of error
trajectory of arbitrary length
» Correctness: No incorrect result due to floating point
rounding or convergence to non-global optima
» Scalability: Even if verification fails (e.g., for high-dimensional
examples), can compute abstractions
Weaknesses:
» Does not yet exploit special cases (ongoing work,
experimental features [Dzetkuli¢ and Ratschan, 2009])
» Only restricted method for finding error trajectories [Ratschan
and Smaus, 2009]
» Current implementation: does not scale wrt. number of
discrete modes

5/16



Abstractions in HSOLVER
Box grid [Kuipers, 1995]

2-dimensional, 1 mode:

6/16



Abstractions in HSOLVER
Box grid [Kuipers, 1995]

2-dimensional, 1 mode:

16



Abstractions in HSOLVER
Box grid [Kuipers, 1995]

2-dimensional, 1 mode:

7T 7 7

Safety of abstraction implies safety of original system

6/16



Abstractions in HSOLVER
Box grid [Kuipers, 1995]

2-dimensional, 1 mode:

7T 7 7

Safety of abstraction implies safety of original system

refinement: split a box into two
increases abstraction size: only use as last resort!

6

16



Abstraction Pruning

Reflect more information in abstraction,
without creating more boxes by splitting

/16



Abstraction Pruning

Reflect more information in abstraction,
without creating more boxes by splitting

Observation: parts of state space not lying on an error trajectory
not needed, remove such parts from boxes

16



Abstraction Pruning

Reflect more information in abstraction,
without creating more boxes by splitting

Observation: parts of state space not lying on an error trajectory
not needed, remove such parts from boxes

7/16



Abstraction Pruning

Reflect more information in abstraction,
without creating more boxes by splitting

Observation: parts of state space not lying on an error trajectory
not needed, remove such parts from boxes

7/16



Algorithm for Abstraction Pruning

/16



Algorithm for Abstraction Pruning

N
_—

For each box marked as initial:
over-approximate set of states reachable from an initial state

8/16



Algorithm for Abstraction Pruning

I eiaau
]

If empty set, remove initiality mark

8/16



Algorithm for Abstraction Pruning

\

while some new states reachable through a transition,
add them

/16



Algorithm for Abstraction Pruning

/

while some new states reachable through a transition,
add them

8/16



Algorithm for Abstraction Pruning

/

while some new states reachable through a transition,
add them

8/16



Algorithm for Abstraction Pruning

/

while some new states reachable through a transition,
add them

8/16



Algorithm for Abstraction Pruning

/

u

remove unconfirmed transitions

8/16



Algorithm for Abstraction Pruning

Replace boxes by new ones

8/16



Further Issues

Error trajectory: starts in initial states, leads to unsafe states

Hence: apply pruning algorithm also backward in time

16



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time

Incrementality between splits, forward/backward phases

16



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time
Incrementality between splits, forward/backward phases

Many possibilities concerning heuristics/widening strategies.



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time
Incrementality between splits, forward/backward phases
Many possibilities concerning heuristics/widening strategies.

Method can be instantiated
with arbitrary reachability computation algorithm



Further Issues

Error trajectory: starts in initial states, leads to unsafe states
Hence: apply pruning algorithm also backward in time
Incrementality between splits, forward/backward phases
Many possibilities concerning heuristics/widening strategies.

Method can be instantiated
with arbitrary reachability computation algorithm
Our implementation:

» Interval constraint propagation [Benhamou and Granvilliers,
2006] +

» algebraization of ODEs [Hickey, 2000, Ratschan and She,
2007]

9/16



How to Get Rich?

10/16



How to Get Rich?

What about more interesting discrete behavior?

10/16



How to Get Rich?

What about more interesting discrete behavior?

For example:

10/16



How to Get Rich?

What about more interesting discrete behavior?

For example:
Instead of finitely many modes,
variables over various data types,
evolving according to computer program?

16



How to Get Rich?

What about more interesting discrete behavior?

For example:
Instead of finitely many modes,
variables over various data types,
evolving according to computer program?

Communication between program and differential (in)equations?

16



How to Get Rich?

What about more interesting discrete behavior?

For example:
Instead of finitely many modes,
variables over various data types,
evolving according to computer program?

Communication between program and differential (in)equations?

Program can explicitly switch differential (in)equations

16



How to Get Rich?

What about more interesting discrete behavior?

For example:
Instead of finitely many modes,
variables over various data types,
evolving according to computer program?

Communication between program and differential (in)equations?
Program can explicitly switch differential (in)equations

Program can read and write continuous variables
(abstracts from A/D conversion)

10/16



How to Get Rich?

What about more interesting discrete behavior?

For example:
Instead of finitely many modes,
variables over various data types,
evolving according to computer program?

Communication between program and differential (in)equations?
Program can explicitly switch differential (in)equations

Program can read and write continuous variables
(abstracts from A/D conversion)

How to match discrete to continuous time?

10/16



How to Get Rich?

What about more interesting discrete behavior?

For example:
Instead of finitely many modes,
variables over various data types,
evolving according to computer program?

Communication between program and differential (in)equations?
Program can explicitly switch differential (in)equations

Program can read and write continuous variables
(abstracts from A/D conversion)

How to match discrete to continuous time?

For each program statement interval bound on duration?
(may be [0,0])

10/16



Previous Work

HybridFluctuat (Bouissou, Goubault, Putot et. al.)

Similar model for interaction software - environment.

11/16



Previous Work

HybridFluctuat (Bouissou, Goubault, Putot et. al.)
Similar model for interaction software - environment.
Verification by symbolic co-simulation

Interval based ODE integrator (i.e., good for deterministic systems,
only limited non-determism)

Bounded time

Does not exploit property at hand

11/16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.

12/16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.

Result might be well-known, might be completely useless etc.

12/16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.
Result might be well-known, might be completely useless etc.

State space:  (program counter + values of variables)

12 /16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.
Result might be well-known, might be completely useless etc.
State space:  (program counter + values of variables)

Abstract states: A C 29

12 /16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.

Result might be well-known, might be completely useless etc.
State space:  (program counter + values of variables)
Abstract states: A C 2¢

> Split(a)= (a1,...,ak) st. Ujepr, pyai=a

12 /16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.

Result might be well-known, might be completely useless etc.
State space:  (program counter + values of variables)
Abstract states: A C 2¢

> Split(a)= (a1,...,ak) st. Ujepr, pyai=a
» InitReach(a) s.t. InitReach(a) 2
{x€aloy— -+ — ok =x,01 initial, 01 € a,...,0 € a}

12 /16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.
Result might be well-known, might be completely useless etc.
State space:  (program counter + values of variables)

Abstract states: A C 29

» Split(a)= (a1, ..., ak) s.t. Uie{l,...,k} aj—a
» InitReach(a) s.t. InitReach(a) 2

{x€aloy— -+ — ok =x,01 initial, 01 € a,...,0 € a}
» Reach(aj,, a): Reach(aj,, a) 2
{xea]ol—>-~—>ak:x,01 ea,-,,,agea,...,akea}

12 /16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.

Result might be well-known, might be completely useless etc.
State space:  (program counter + values of variables)
Abstract states: A C 2¢

» Split(a)= (a1, ..., ak) s.t. Uie{l,...,k} aj—a
» InitReach(a) s.t. InitReach(a) 2

{x€aloy— -+ — ok =x,01 initial, 01 € a,...,0 € a}
» Reach(aj,, a): Reach(aj,, a) 2
{xea]ol—>-~—>ak:x,01 ea,-,,,agea,...,akea}

> Wy s.t. (alLJag)ﬂb C agWpa C b

12 /16



Thought Experiment: Software Analogon of Verif. Alg.

Naive translation from hybrid to software.
Result might be well-known, might be completely useless etc.
State space:  (program counter + values of variables)

Abstract states: A C 29

v

Split(a)= (a1, ..., ak) st. Ujep, yai=a

InitReach(a) s.t. InitReach(a) 2
{x€aloy— -+ — ok =x,01 initial, 01 € a,...,0 € a}
Reach(aj,, a): Reach(aj,,a) 2

{XEa’(fl — -t > O = X,01 € ajp,02€ a,...,0k Ea}
Hp s.t. (alLJag)ﬂb C agWpa C b

» C s.t. a1 C ap implies a1 C a»

v

v

v

12 /16



Algorithm for Abstraction Pruning

/

N
_—

Boxes now represent elements of a chosen class A of subsets of Q2

13/16



Algorithm for Abstraction Pruning

I e
]

Boxes now represent elements of a chosen class A of subsets of

13/16



Algorithm for Abstraction Pruning

I e
|

Boxes now represent elements of a chosen class A of subsets of

13/16



Algorithm for Abstraction Pruning

\

Boxes now represent elements of a chosen class A of subsets of Q2

13/16



Algorithm for Abstraction Pruning

Boxes now represent elements of a chosen class A of subsets of Q2

13 /16



Algorithm for Abstraction Pruning

/

Boxes now represent elements of a chosen class A of subsets of Q2

13 /16



Algorithm for Abstraction Pruning

/

Boxes now represent elements of a chosen class A of subsets of Q2

13 /16



Algorithm for Abstraction Pruning

- el

Boxes now represent elements of a chosen class A of subsets of Q2

13 /16



Algorithm for Abstraction Pruning

Boxes now represent elements of a chosen class A of subsets of Q2

13 /16



‘O < <=>

<E>»

o>
14 /16



Conclusion

» Combined algorithm?

14/16



Conclusion

» Combined algorithm?
» Which class of abstract states A?

14/16



Conclusion

» Combined algorithm?
» Which class of abstract states A?

> Is all of this anyway completely nonsense?

14 /16



Literature |

F. Benhamou and L. Granvilliers. Continuous and interval
constraints. In F. Rossi, P. van Beek, and T. Walsh, editors,
Handbook of Constraint Programming, chapter 16, pages
571-603. Elsevier, Amsterdam, 2006.

Olivier Bouissou, Eric Goubault, Sylvie Putot, Karim Tekkal, and
Franck Védrine. HybridFluctuat: A static analyzer of numerical
programs within a continuous environment. In Proceedings of
Computer Aided Verification CAV’09, volume 5649 of LNCS,
pages 620-626. Springer, 2009.

Tom3a$ Dzetkuli¢ and Stefan Ratschan. How to capture hybrid
systems evolution into slices of parallel hyperplanes. In
ADHS'09: 3rd IFAC Conference on Analysis and Design of
Hybrid Systems, pages 274-279, 2009.

15/16



Literature Il

Timothy J. Hickey. Analytic constraint solving and interval

arithmetic. In Proc. of the 27th ACM SIGACT-SIGPLAN Symp.
on Principles of Progr. Lang., pages 338-351. ACM Press, 2000.

B. J. Kuipers. Qualitative simulation. Artificial Intelligence, 29:
290-338, 1995.
Stefan Ratschan and Zhikun She. Safety verification of hybrid

systems by constraint propagation based abstraction refinement.

ACM Transactions in Embedded Computing Systems, 6(1),
2007.

Stefan Ratschan and Jan-Georg Smaus. Finding errors of hybrid
systems by optimising an abstraction-based quality estimate. In
Catherine Dubois, editor, Tests and Proofs, volume 5668 of
LNCS, pages 153-168. Springer, 2009.

16

16



	References

