
Automatic
Proofs and Refutations

in Isabelle/HOL
A Survey

Tobias Nipkow

Institut für Informatik
Technische Universität München

λ →

∀
=Isa

be
lle

β
α

HOL

Background

Isabelle

• Interactive theorem prover

• Based on higher-order logic

Background

Isabelle

• Interactive theorem prover

• Based on higher-order logic

Background

Isabelle

• Interactive theorem prover

• Based on higher-order logic

Proof in Isabelle

Follows the LCF-approach:

The only way to derive new theorems is
by composing inference rules of the logic

(and previously proved theorems)

⇒ All theorems are correct by construction!

An architecture for complex proof procedures:

1 Produce some certificate
(possibly summarizing a long search).

2 Translate the certificate into a theorem.

Proof in Isabelle

Follows the LCF-approach:

The only way to derive new theorems is
by composing inference rules of the logic

(and previously proved theorems)

⇒ All theorems are correct by construction!

An architecture for complex proof procedures:

1 Produce some certificate
(possibly summarizing a long search).

2 Translate the certificate into a theorem.

Proof in Isabelle

Follows the LCF-approach:

The only way to derive new theorems is
by composing inference rules of the logic

(and previously proved theorems)

⇒ All theorems are correct by construction!

An architecture for complex proof procedures:

1 Produce some certificate
(possibly summarizing a long search).

2 Translate the certificate into a theorem.

Proof in Isabelle

Follows the LCF-approach:

The only way to derive new theorems is
by composing inference rules of the logic

(and previously proved theorems)

⇒ All theorems are correct by construction!

An architecture for complex proof procedures:

1 Produce some certificate
(possibly summarizing a long search).

2 Translate the certificate into a theorem.

Proof in Isabelle

Follows the LCF-approach:

The only way to derive new theorems is
by composing inference rules of the logic

(and previously proved theorems)

⇒ All theorems are correct by construction!

An architecture for complex proof procedures:

1 Produce some certificate
(possibly summarizing a long search).

2 Translate the certificate into a theorem.

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

The workhorses

The provers:

• simp, auto, force:

rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

The workhorses

The provers:

• simp, auto, force:
rewriting, a bit of arithmetic, more and more logic

[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

The workhorses

The provers:

• simp, auto, force:
rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

The workhorses

The provers:

• simp, auto, force:
rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:

logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

The workhorses

The provers:

• simp, auto, force:
rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.

[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

The workhorses

The provers:

• simp, auto, force:
rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

The workhorses

The provers:

• simp, auto, force:
rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

The workhorses

The provers:

• simp, auto, force:
rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete

Metis
by Joe Hurd for HOL4

• Ordered resolution

• Written in SML

• Performs in CASC (lower third)

• Generates resolution proof

• Isabelle theorem generated in a second step

Metis
by Joe Hurd for HOL4

• Ordered resolution

• Written in SML

• Performs in CASC (lower third)

• Generates resolution proof

• Isabelle theorem generated in a second step

Metis
by Joe Hurd for HOL4

• Ordered resolution

• Written in SML

• Performs in CASC (lower third)

• Generates resolution proof

• Isabelle theorem generated in a second step

Metis
by Joe Hurd for HOL4

• Ordered resolution

• Written in SML

• Performs in CASC (lower third)

• Generates resolution proof

• Isabelle theorem generated in a second step

Metis
by Joe Hurd for HOL4

• Ordered resolution

• Written in SML

• Performs in CASC (lower third)

• Generates resolution proof

• Isabelle theorem generated in a second step

Arithmetic and Algebra

• arith: linear real arithmetic & Presburger arithmetic

• algebra: Gröbner basis

Arithmetic and Algebra

• arith: linear real arithmetic & Presburger arithmetic

• algebra: Gröbner basis

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

Sledgehammer

by Paulson, Meng, Susanto, Quigley (at Cambridge)
Wenzel, Immler, Meyer, Blanchette (at Munich)

How works

Isabelle

higher-order, typed

ATP

E, SPASS, Vampire

first-order, untyped

Conjecture Proof

How works

Isabelle

higher-order, typed

ATP

E, SPASS, Vampire

first-order, untyped

Conjecture

Proof

How works

Isabelle

higher-order, typed

ATP

E, SPASS, Vampire

first-order, untyped

Conjecture Proof

How works

goal φ

` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500

Used ⊆ Lems

10

5000

How works

goal φ

` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500

Used ⊆ Lems

10

5000

How works

goal φ

` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500

Used ⊆ Lems

10

5000

How works

goal φ

` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500
Used ⊆ Lems

10

5000

How works

goal φ

` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500

Used ⊆ Lems

10

5000

How works

goal φ

` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500

Used ⊆ Lems

10

5000

How works

goal φ ` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500

Used ⊆ Lems

10

5000

How works

goal φ ` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)

500

Used ⊆ Lems

10

5000

How works

goal φ ` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)
500

Used ⊆ Lems

10

5000

How works

goal φ ` φ

Lemma
Library

Relevance
Filter

ATP
Metis

Isabelle

ATP

(Lems,¬φ)
500

Used ⊆ Lems
10

5000

External ATPs act as relevance filter for Metis

Sledgehammer: proofs

• Short, cryptic, expensive to reconstruct:

lemma f xs 6= Suc 0

by (metis f.simps less Suc eq 0 disj list.exhaust less irrefl

Suc not Zero)

• Long, readable, easy to reconstruct:

lemma f xs 6= Suc 0
proof −

have F1 : ∀x1. Suc 0 < f x1 ∨ x1 = []
by (metis f.simps(2) less Suc eq 0 disj list.exhaust)

{ assume xs 6= []
hence f xs 6= Suc 0 by (metis F1 less irrefl) }

thus f xs 6= Suc 0 by (metis f.simps(1) Suc not Zero)

qed

Work in progress!

Sledgehammer: proofs

• Short, cryptic, expensive to reconstruct:

lemma f xs 6= Suc 0
by (metis f.simps less Suc eq 0 disj list.exhaust less irrefl

Suc not Zero)

• Long, readable, easy to reconstruct:

lemma f xs 6= Suc 0
proof −

have F1 : ∀x1. Suc 0 < f x1 ∨ x1 = []
by (metis f.simps(2) less Suc eq 0 disj list.exhaust)

{ assume xs 6= []
hence f xs 6= Suc 0 by (metis F1 less irrefl) }

thus f xs 6= Suc 0 by (metis f.simps(1) Suc not Zero)

qed

Work in progress!

Sledgehammer: proofs

• Short, cryptic, expensive to reconstruct:

lemma f xs 6= Suc 0
by (metis f.simps less Suc eq 0 disj list.exhaust less irrefl

Suc not Zero)

• Long, readable, easy to reconstruct:

lemma f xs 6= Suc 0

proof −
have F1 : ∀x1. Suc 0 < f x1 ∨ x1 = []

by (metis f.simps(2) less Suc eq 0 disj list.exhaust)
{ assume xs 6= []

hence f xs 6= Suc 0 by (metis F1 less irrefl) }
thus f xs 6= Suc 0 by (metis f.simps(1) Suc not Zero)

qed

Work in progress!

Sledgehammer: proofs

• Short, cryptic, expensive to reconstruct:

lemma f xs 6= Suc 0
by (metis f.simps less Suc eq 0 disj list.exhaust less irrefl

Suc not Zero)

• Long, readable, easy to reconstruct:

lemma f xs 6= Suc 0
proof −

have F1 : ∀x1. Suc 0 < f x1 ∨ x1 = []
by (metis f.simps(2) less Suc eq 0 disj list.exhaust)
{ assume xs 6= []

hence f xs 6= Suc 0 by (metis F1 less irrefl) }
thus f xs 6= Suc 0 by (metis f.simps(1) Suc not Zero)

qed

Work in progress!

Sledgehammer: proofs

• Short, cryptic, expensive to reconstruct:

lemma f xs 6= Suc 0
by (metis f.simps less Suc eq 0 disj list.exhaust less irrefl

Suc not Zero)

• Long, readable, easy to reconstruct:

lemma f xs 6= Suc 0
proof −

have F1 : ∀x1. Suc 0 < f x1 ∨ x1 = []
by (metis f.simps(2) less Suc eq 0 disj list.exhaust)
{ assume xs 6= []

hence f xs 6= Suc 0 by (metis F1 less irrefl) }
thus f xs 6= Suc 0 by (metis f.simps(1) Suc not Zero)

qed

Work in progress!

Sledgehammer: empirical evaluation

Based on 1200 goals from diverse theories covering

• arithmetic

• inductive datatypes

• recursive functions

• inductive definitions

• set theory

Sledgehammer: some key findings

• 45% of all goals (not lemmas!) can be proved automatically

• 33% of all non-trivial goals can be proved automatically

• 3 ATPs for 5 secs ≥ 1 ATP for 120 secs

0

20

40

60

5 10 30 60 120

E SPASS Vampire

number of goals only a
particular prover can prove

[Böhme, Nipkow, IJCAR 2010]

Sledgehammer: some key findings

• 45% of all goals (not lemmas!) can be proved automatically

• 33% of all non-trivial goals can be proved automatically

• 3 ATPs for 5 secs ≥ 1 ATP for 120 secs

0

20

40

60

5 10 30 60 120

E SPASS Vampire

number of goals only a
particular prover can prove

[Böhme, Nipkow, IJCAR 2010]

Sledgehammer: some key findings

• 45% of all goals (not lemmas!) can be proved automatically

• 33% of all non-trivial goals can be proved automatically

• 3 ATPs for 5 secs ≥ 1 ATP for 120 secs

0

20

40

60

5 10 30 60 120

E SPASS Vampire

number of goals only a
particular prover can prove

[Böhme, Nipkow, IJCAR 2010]

Sledgehammer: some key findings

• 45% of all goals (not lemmas!) can be proved automatically

• 33% of all non-trivial goals can be proved automatically

• 3 ATPs for 5 secs ≥ 1 ATP for 120 secs

0

20

40

60

5 10 30 60 120

E SPASS Vampire

number of goals only a
particular prover can prove

[Böhme, Nipkow, IJCAR 2010]

Sledgehammer: some key findings

• 45% of all goals (not lemmas!) can be proved automatically

• 33% of all non-trivial goals can be proved automatically

• 3 ATPs for 5 secs ≥ 1 ATP for 120 secs

0

20

40

60

5 10 30 60 120

E SPASS Vampire

number of goals only a
particular prover can prove

[Böhme, Nipkow, IJCAR 2010]

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

Integration of SMT Solvers

Isabelle SMT solver

conjecture φ

facts Γ SMT

Γ ∧ ¬φ

theorem φ

unsat

Z3 proof

LCF proof

False

Virtually all SMT solvers contain bugs!

• leading SMT solver

• developed by Microsoft Research

• supports proofs

Integration of SMT Solvers

Isabelle SMT solver

conjecture φ

facts Γ SMT

Γ ∧ ¬φ

theorem φ

unsat

Z3 proof

LCF proof

False

SMT

Virtually all SMT solvers contain bugs!

• leading SMT solver

• developed by Microsoft Research

• supports proofs

Integration of SMT Solvers

Isabelle SMT solver

conjecture φ

facts Γ SMT

Γ ∧ ¬φ

theorem φ

unsat

Z3 proof

LCF proof

False

Z3

Virtually all SMT solvers contain bugs!

• leading SMT solver

• developed by Microsoft Research

• supports proofs

Integration of SMT Solvers

Isabelle SMT solver

conjecture φ

facts Γ Z3

Γ ∧ ¬φ

theorem φ

unsat

Z3 proof

LCF proof

False

Virtually all SMT solvers contain bugs!

• leading SMT solver

• developed by Microsoft Research

• supports proofs

Integration of SMT Solvers

Isabelle SMT solver

conjecture φ

facts Γ Z3

Γ ∧ ¬φ

theorem φ

unsat

Z3 proof

LCF proof

False

Virtually all SMT solvers contain bugs!

• leading SMT solver

• developed by Microsoft Research

• supports proofs

Integration of SMT Solvers

Isabelle SMT solver

conjecture φ

facts Γ Z3

Γ ∧ ¬φ

theorem φ

unsat

Z3 proof

LCF proof

Γ,¬φ ` False

Virtually all SMT solvers contain bugs!

• leading SMT solver

• developed by Microsoft Research

• supports proofs

Z3 Proof Format

Z3’s proofs are conceptually simple:

• natural deduction

• (only) 34 inference rules

• theory reasoning: only two generic inference rules

Th-Lemma: inconsistency of theory atoms

• no hint towards kind of theory

• no further proof explanation

Rewrite: propositional/theory-related equivalences/equalities

• nearly unspecified . . .

Theory rules are lacking valuable information!

Z3 Proof Format

Z3’s proofs are conceptually simple:

• natural deduction

• (only) 34 inference rules

• theory reasoning: only two generic inference rules

Th-Lemma: inconsistency of theory atoms

• no hint towards kind of theory

• no further proof explanation

Rewrite: propositional/theory-related equivalences/equalities

• nearly unspecified . . .

Theory rules are lacking valuable information!

Z3 Proof Format

Z3’s proofs are conceptually simple:

• natural deduction

• (only) 34 inference rules

• theory reasoning: only two generic inference rules

Th-Lemma: inconsistency of theory atoms

• no hint towards kind of theory

• no further proof explanation

Rewrite: propositional/theory-related equivalences/equalities

• nearly unspecified . . .

Theory rules are lacking valuable information!

Z3 Proof Format

Z3’s proofs are conceptually simple:

• natural deduction

• (only) 34 inference rules

• theory reasoning: only two generic inference rules

Th-Lemma: inconsistency of theory atoms

• no hint towards kind of theory

• no further proof explanation

Rewrite: propositional/theory-related equivalences/equalities

• nearly unspecified . . .

Theory rules are lacking valuable information!

Proof Reconstruction for Z3

Proof reconstruction:

• one Isabelle proof method for each Z3 inference rule

• depth-first traversal through Z3 proof graph

Bottleneck: theory reasoning

• Th-Lemma: expensive proof search

• Rewrite: try a bunch of different specific proof methods
and internal provers

[Böhme, Weber, ITP2010]

Proof Reconstruction for Z3

Proof reconstruction:

• one Isabelle proof method for each Z3 inference rule

• depth-first traversal through Z3 proof graph

Bottleneck: theory reasoning

• Th-Lemma: expensive proof search

• Rewrite: try a bunch of different specific proof methods
and internal provers

[Böhme, Weber, ITP2010]

Proof Reconstruction for Z3

Proof reconstruction:

• one Isabelle proof method for each Z3 inference rule

• depth-first traversal through Z3 proof graph

Bottleneck: theory reasoning

• Th-Lemma: expensive proof search

• Rewrite: try a bunch of different specific proof methods
and internal provers

[Böhme, Weber, ITP2010]

Evaluation

SMT-LIB benchmarks:

Logic Z3 Isabelle Rates
Med. Med. Med. Time-

Time Size # Time Succ. out
AUFLIA+p 187 0.03 s 5 KB 187 0.06 s 100% 0%
AUFLIA−p 192 0.04 s 4 KB 190 0.06 s 98% 0%
AUFLIRA 189 0.02 s 16 KB 144 0.04 s 76% 0%

...
...

...
...

...
...

...
...

Total 1273 3.66 s 13 MB 962 11.31 s 75% 19%

Profiling:

• bottleneck: theory reasoning requires expensive proof search

• 50% of the runtime is spent on 15% of all Z3 proof steps

Evaluation

SMT-LIB benchmarks:

Logic Z3 Isabelle Rates
Med. Med. Med. Time-

Time Size # Time Succ. out
AUFLIA+p 187 0.03 s 5 KB 187 0.06 s 100% 0%
AUFLIA−p 192 0.04 s 4 KB 190 0.06 s 98% 0%
AUFLIRA 189 0.02 s 16 KB 144 0.04 s 76% 0%

...
...

...
...

...
...

...
...

Total 1273 3.66 s 13 MB 962 11.31 s 75% 19%

Profiling:

• bottleneck: theory reasoning requires expensive proof search

• 50% of the runtime is spent on 15% of all Z3 proof steps

Evaluation

SMT-LIB benchmarks:

Logic Z3 Isabelle Rates
Med. Med. Med. Time-

Time Size # Time Succ. out
AUFLIA+p 187 0.03 s 5 KB 187 0.06 s 100% 0%
AUFLIA−p 192 0.04 s 4 KB 190 0.06 s 98% 0%
AUFLIRA 189 0.02 s 16 KB 144 0.04 s 76% 0%

...
...

...
...

...
...

...
...

Total 1273 3.66 s 13 MB 962 11.31 s 75% 19%

Profiling:

• bottleneck: theory reasoning requires expensive proof search

• 50% of the runtime is spent on 15% of all Z3 proof steps

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast

• Restricted to executable fragment of HOL

Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

Nitpick: How It Works

Nitpick Kodkod
SAT

solver

Nitpick:

• converts HOL formula to first-order relational logic (FORL)

• invokes the SAT-based Kodkod model finder (Alloy’s backend)
on FORL formula

• handles HOL’s definitional principles specially:
• (co)inductive predicates and datatypes
• (co)recursive functions

• optimizes common higher-order idioms

[Blanchette, Nipkow, ITP-10]

Nitpick: How It Works

Nitpick Kodkod
SAT

solver

Nitpick:

• converts HOL formula to first-order relational logic (FORL)

• invokes the SAT-based Kodkod model finder (Alloy’s backend)
on FORL formula

• handles HOL’s definitional principles specially:
• (co)inductive predicates and datatypes
• (co)recursive functions

• optimizes common higher-order idioms

[Blanchette, Nipkow, ITP-10]

Nitpick: How It Works

Nitpick Kodkod
SAT

solver

Nitpick:

• converts HOL formula to first-order relational logic (FORL)

• invokes the SAT-based Kodkod model finder (Alloy’s backend)
on FORL formula

• handles HOL’s definitional principles specially:
• (co)inductive predicates and datatypes
• (co)recursive functions

• optimizes common higher-order idioms

[Blanchette, Nipkow, ITP-10]

Nitpick: How It Works

Nitpick Kodkod
SAT

solver

Nitpick:

• converts HOL formula to first-order relational logic (FORL)

• invokes the SAT-based Kodkod model finder (Alloy’s backend)
on FORL formula

• handles HOL’s definitional principles specially:
• (co)inductive predicates and datatypes
• (co)recursive functions

• optimizes common higher-order idioms

[Blanchette, Nipkow, ITP-10]

Nitpick: How It Works

Nitpick Kodkod
SAT

solver

Nitpick:

• converts HOL formula to first-order relational logic (FORL)

• invokes the SAT-based Kodkod model finder (Alloy’s backend)
on FORL formula

• handles HOL’s definitional principles specially:
• (co)inductive predicates and datatypes
• (co)recursive functions

• optimizes common higher-order idioms

[Blanchette, Nipkow, ITP-10]

Nitpick: How It Works

Nitpick Kodkod
SAT

solver

Nitpick:

• converts HOL formula to first-order relational logic (FORL)

• invokes the SAT-based Kodkod model finder (Alloy’s backend)
on FORL formula

• handles HOL’s definitional principles specially:
• (co)inductive predicates and datatypes
• (co)recursive functions

• optimizes common higher-order idioms

[Blanchette, Nipkow, ITP-10]

Nitpick: Small Examples

1. (A ∪ B)+ = A+ ∪ B+

A = {(2, 1)} B = {(1, 2)}

2. xs @ ys = xs ←→ ys = [] (for coinductive lists)

xs = ys = [1, 1, . . .]

Nitpick: Small Examples

1. (A ∪ B)+ = A+ ∪ B+

A = {(2, 1)} B = {(1, 2)}

2. xs @ ys = xs ←→ ys = [] (for coinductive lists)

xs = ys = [1, 1, . . .]

Nitpick: Small Examples

1. (A ∪ B)+ = A+ ∪ B+

A = {(2, 1)} B = {(1, 2)}

2. xs @ ys = xs ←→ ys = []

(for coinductive lists)

xs = ys = [1, 1, . . .]

Nitpick: Small Examples

1. (A ∪ B)+ = A+ ∪ B+

A = {(2, 1)} B = {(1, 2)}

2. xs @ ys = xs ←→ ys = [] (for coinductive lists)

xs = ys = [1, 1, . . .]

Nitpick: Small Examples

1. (A ∪ B)+ = A+ ∪ B+

A = {(2, 1)} B = {(1, 2)}

2. xs @ ys = xs ←→ ys = [] (for coinductive lists)

xs = ys = [1, 1, . . .]

Nitpick: Empirical Evaluation

Mutation testing:

On average, Nitpick falsifies ≈42% of all mutants

Nitpick: Empirical Evaluation

Mutation testing:

On average, Nitpick falsifies ≈42% of all mutants

1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck

Quickcheck

conjecture

background
theory

quickcheck

HOL
function

random data
generators

code
generator

ML code
ML

compiler
counterexample

Quickcheck

conjecture

background
theory

quickcheck

HOL
function

random data
generators

code
generator

ML code
ML

compiler
counterexample

Quickcheck

conjecture

background
theory

quickcheck

HOL
function

random data
generators

code
generator

ML code
ML

compiler
counterexample

Quickcheck

conjecture

background
theory

quickcheck

HOL
function

random data
generators

code
generator

ML code
ML

compiler
counterexample

Quickcheck

conjecture

background
theory

quickcheck

HOL
function

random data
generators

code
generator

ML code

ML
compiler

counterexample

Quickcheck

conjecture

background
theory

quickcheck

HOL
function

random data
generators

code
generator

ML code
ML

compiler

counterexample

Quickcheck

conjecture

background
theory

quickcheck

HOL
function

random data
generators

code
generator

ML code
ML

compiler
counterexample

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

Current and future work

Focus: Sledgehammer

• Can we give the ATPs more information?

• Proof replay in Isabelle

• Improved treatment of HO problems

What we would like:

• bigger, better, faster, more ATPs

• bigger, better, faster, more SMT solvers

• bigger, better, faster, more SAT solvers

	Automatic Proof
	Internal Provers
	External Provers

	Automatic Refutation
	Nitpick
	Quickcheck

