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Follows the LCF-approach:

The only way to derive new theorems is
by composing inference rules of the logic

(and previously proved theorems)

⇒ All theorems are correct by construction!

An architecture for complex proof procedures:

1 Produce some certificate
(possibly summarizing a long search).

2 Translate the certificate into a theorem.
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The workhorses

The provers:

• simp, auto, force:

rewriting, a bit of arithmetic, more and more logic
[rewriting interleaved with tableau]

• blast:
logic, sets and relations, almost no =, no arithmetic.
[tableau]

The user perspective:

• Frequently fast and effective

• Sometimes annoyingly incomplete
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• Isabelle theorem generated in a second step
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Sledgehammer

by Paulson, Meng, Susanto, Quigley (at Cambridge)
Wenzel, Immler, Meyer, Blanchette (at Munich)
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External ATPs act as relevance filter for Metis



Sledgehammer: proofs

• Short, cryptic, expensive to reconstruct:

lemma f xs 6= Suc 0

by (metis f.simps less Suc eq 0 disj list.exhaust less irrefl

Suc not Zero)

• Long, readable, easy to reconstruct:

lemma f xs 6= Suc 0
proof −

have F1 : ∀x1. Suc 0 < f x1 ∨ x1 = []
by (metis f.simps(2) less Suc eq 0 disj list.exhaust)

{ assume xs 6= []
hence f xs 6= Suc 0 by (metis F1 less irrefl) }

thus f xs 6= Suc 0 by (metis f.simps(1) Suc not Zero)

qed

Work in progress!
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Sledgehammer: empirical evaluation

Based on 1200 goals from diverse theories covering

• arithmetic

• inductive datatypes

• recursive functions

• inductive definitions

• set theory



Sledgehammer: some key findings

• 45% of all goals (not lemmas!) can be proved automatically

• 33% of all non-trivial goals can be proved automatically

• 3 ATPs for 5 secs ≥ 1 ATP for 120 secs
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[Böhme, Nipkow, IJCAR 2010]



Sledgehammer: some key findings

• 45% of all goals (not lemmas!) can be proved automatically

• 33% of all non-trivial goals can be proved automatically

• 3 ATPs for 5 secs ≥ 1 ATP for 120 secs

0

20

40

60

5 10 30 60 120

E SPASS Vampire

number of goals only a
particular prover can prove
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Isabelle SMT solver

conjecture φ

facts Γ SMT
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theorem φ

unsat

Z3 proof

LCF proof

False

Virtually all SMT solvers contain bugs!
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Z3 Proof Format

Z3’s proofs are conceptually simple:

• natural deduction

• (only) 34 inference rules

• theory reasoning: only two generic inference rules

Th-Lemma: inconsistency of theory atoms

• no hint towards kind of theory

• no further proof explanation

Rewrite: propositional/theory-related equivalences/equalities

• nearly unspecified . . .

Theory rules are lacking valuable information!
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Proof Reconstruction for Z3

Proof reconstruction:

• one Isabelle proof method for each Z3 inference rule

• depth-first traversal through Z3 proof graph

Bottleneck: theory reasoning

• Th-Lemma: expensive proof search

• Rewrite: try a bunch of different specific proof methods
and internal provers

[Böhme, Weber, ITP2010]
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[Böhme, Weber, ITP2010]



Proof Reconstruction for Z3

Proof reconstruction:

• one Isabelle proof method for each Z3 inference rule

• depth-first traversal through Z3 proof graph

Bottleneck: theory reasoning

• Th-Lemma: expensive proof search

• Rewrite: try a bunch of different specific proof methods
and internal provers
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Evaluation

SMT-LIB benchmarks:

Logic Z3 Isabelle Rates
Med. Med. Med. Time-

# Time Size # Time Succ. out
AUFLIA+p 187 0.03 s 5 KB 187 0.06 s 100% 0%
AUFLIA−p 192 0.04 s 4 KB 190 0.06 s 98% 0%
AUFLIRA 189 0.02 s 16 KB 144 0.04 s 76% 0%

...
...

...
...

...
...

...
...

Total 1273 3.66 s 13 MB 962 11.31 s 75% 19%

Profiling:

• bottleneck: theory reasoning requires expensive proof search

• 50% of the runtime is spent on 15% of all Z3 proof steps



Evaluation

SMT-LIB benchmarks:

Logic Z3 Isabelle Rates
Med. Med. Med. Time-

# Time Size # Time Succ. out
AUFLIA+p 187 0.03 s 5 KB 187 0.06 s 100% 0%
AUFLIA−p 192 0.04 s 4 KB 190 0.06 s 98% 0%
AUFLIRA 189 0.02 s 16 KB 144 0.04 s 76% 0%

...
...

...
...

...
...

...
...

Total 1273 3.66 s 13 MB 962 11.31 s 75% 19%

Profiling:

• bottleneck: theory reasoning requires expensive proof search

• 50% of the runtime is spent on 15% of all Z3 proof steps



Evaluation

SMT-LIB benchmarks:

Logic Z3 Isabelle Rates
Med. Med. Med. Time-

# Time Size # Time Succ. out
AUFLIA+p 187 0.03 s 5 KB 187 0.06 s 100% 0%
AUFLIA−p 192 0.04 s 4 KB 190 0.06 s 98% 0%
AUFLIRA 189 0.02 s 16 KB 144 0.04 s 76% 0%

...
...

...
...

...
...

...
...

Total 1273 3.66 s 13 MB 962 11.31 s 75% 19%

Profiling:

• bottleneck: theory reasoning requires expensive proof search

• 50% of the runtime is spent on 15% of all Z3 proof steps



1 Automatic Proof
Internal Provers
External Provers

FO ATPs
SMT Solvers
SDP Solvers

2 Automatic Refutation
Nitpick
Quickcheck



Non-linear arithmetic

The sum-of-squares (SOS) method (by John Harrison):

• To prove p(x1, . . . , xn) ≥ 0, express p as a sum of squares

• Generalized to boolean combinations of p ≥ q and p = q

• The SOS decomposition is found with the help of an external
SDP solver

• Incomplete in theory

• Works well in practice

The Isabelle implementation:

• Ported from HOL Light

• Generates certificates that allow proof replay w/o SDP solver

Example: x2 + y2 + z2 = 1 =⇒ (x + y + z)2 ≤ 3
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Counterexample Generation: Motivation
Why counterexamples are important

• Complex specifications are hard to get right

• Many statements of “theorems” contain errors

• Finding errors by failed proof attempts is expensive

• Counterexample generation can help to find errors quickly

Approaches for counterexample generation

Nitpick search for finite countermodels of formula using
external tools (SAT solvers)

• Covers most of HOL, including non-executable
constructs (e.g. quantifiers)

• Slow for complex data structures

Quickcheck evaluate formula on random values for free variables
using code generator

• Fast
• Restricted to executable fragment of HOL
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