
Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Uniform Reduction to SMT

Predrag Janičić Filip Marić
www.matf.bg.ac.rs/˜janicic www.matf.bg.ac.rs/˜filip

Automated Reasoning GrOup (ARGO)
Faculty of Mathematics

University of Belgrade, Serbia

Synthesis, Verification, and Analysis of Rich Models (SVARM 2010)
Edinburgh, July 20/21, 2010.

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Motivation

Motivation

SAT/SMT solvers are widely used, but encoding to SAT/SMT
is typically made by special-purpose tools

There are interchange formats for SAT/SMT (e.g., SMT-lib)
but no high-level specification languages

Goal: Build a new modelling and solving system (for CSP,
verification problems, etc.) with:

simple but expressible, high-level specification language
efficient interface to powerful SAT/SMT solvers

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

The Basic Idea
Toy example
Expressiveness

The Basic Idea

Consider problems of the form: find values that satisfy given
conditions

It is often hard to develop an efficient specialized procedure
that finds required values

It is often easy to specify an imperative test if given values
satisfy the conditions

Such test can be a problem specification itself

Convert this imperative specification to a SAT/SMT formula
and use solvers to search for its models

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

The Basic Idea
Toy example
Expressiveness

Toy example

Alice picked a number and added 3. Then she doubled what
she got. If the sum of the two numbers that Alice got is 12,
what is the number that she picked?

A simple test cthat A is indeed Alice’s number:
B:=A+3;
C:=2*B;
assert(B+C==12);

This test is a specification of the problem

Unknowns are exactly the variables that were accessed before
they were assigned a value

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

The Basic Idea
Toy example
Expressiveness

Expressiveness

The C-like specification language supports:

integer and Boolean data types; arrays
implicit casting
arithmetical, logical, relational and bit-wise operators
flow-control statements (if, for, while)
defined and undefined functions

Restriction: conditions in the if, for, while statements and
array indices must be ground (cannot contain unknowns)

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Interpretation
Toy Example

Interpretation

Specifications are symbolically executed

The semantics is different from the standard semantics of
imperative languages (e.g., undefined variables can be
accessed)

The result of the interpretation is a quantifier free FOL
formula

This formula is passed to a SAT/SMT solver

If it is satisfiable, its models give solutions of the problem

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Interpretation
Toy Example

Toy Example

Consider the code:
nB=nA+3;
nC=2*nB;
assert(nB+nC==12);

If A corresponds to the unknown nA, then the asserted
expression is evaluated to A + 3 + 2 ∗ (A + 3) == 12

An SMT solver (e.g., for BVA or LIA) can confirm that the
formula is satisfiable (and is true for A equals 1)

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Overall Architecture
Implementation
CSP Example
Verification Example
Sample Experimental Data

Overall Architecture

URSA MAJOR problem specification
↓ interpreter

Quantifier free FOL formula
↓ bitblasting

Propositional formula

↓ SAT solver ↓ SMT (BVA,LA,...) solver

Values of unknowns/Solutions

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Overall Architecture
Implementation
CSP Example
Verification Example
Sample Experimental Data

Implementation

The tool URSA Major (Uniform Reduction to SAtisfiability
Modulo Theory)

Implemented in C++

Employs a subsystem for bitblasting and reduction to SAT

Currently: SAT solvers – ArgoSAT and Clasp, SMT (BVA,
LIA, EUF, ...) solvers – MathSAT, Yices, Boolector

Under constant development (support for new underlying
theories and solvers being added)

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Overall Architecture
Implementation
CSP Example
Verification Example
Sample Experimental Data

CSP Example: The Eight Queens Puzzle

nDim=8;

bDomain = true;

bNoCapture = true;

for(ni=0; ni<nDim; ni++) {
bDomain &&= (n[ni]<nDim);

for(nj=0; nj<nDim; nj++)

if(ni!=nj) {
bNoCapture &&= (n[ni]!=n[nj]);

bNoCapture &&= (ni+n[nj]!=nj+ n[ni]) && (ni+n[ni] != nj+n[nj]);

}
}
assert(bDomain && bNoCapture);

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Overall Architecture
Implementation
CSP Example
Verification Example
Sample Experimental Data

Verification Example: Bit-counters

function nBC1(nX) {
nBC1 = 0;

for (nI = 0; nI < 16; nI++)

nBC1 += nX & (1 << nI) ? 1 : 0;

}
function nBC2(nX) {

nBC2 = nX;

nBC2 = (nc2 & 0x5555) + (nc2>>1 & 0x5555);

nBC2 = (nc2 & 0x3333) + (nc2>>2 & 0x3333);

nBC2 = (nc2 & 0x0077) + (nc2>>4 & 0x0077);

nBC2 = (nc2 & 0x000F) + (nc2>>8 & 0x000F);

}
assert(nBC1(nX)!=nBC2(nX));

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Overall Architecture
Implementation
CSP Example
Verification Example
Sample Experimental Data

Best Underlying Solver?

There is no best underlying solver

Each of the used solvers was most efficient for some problem

This shows that different solvers should be used within the
system

For instance, for the magic square problem and the queens
problem SAT solver Clasp was the most efficient

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Overall Architecture
Implementation
CSP Example
Verification Example
Sample Experimental Data

Sample Experimental Data

Problem: N queens problem (all solutions)

cpu time
1000

100

10

1

0.1

0.01
8 9 10 11 12 13 14

N

Cmodels
Smodels dlv

opl
clasp
g12/fd
ursa
SICStus
B-Prolog

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Conclusions
Current and Further Work

Conclusions

A novel (imperative-declarative) programming paradigm

The user controls the encoding employed

Applicable to a wide range of problems (e.g., for all NP
problems there is a simple witness test)

Competitive to other modelling systems

A high level interface to SMT

Can be used for producing benchmarks

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Conclusions
Current and Further Work

Current and Further Work

Support for more theories and SAT/SMT solvers

Providing APIs for standard programming languages

Real-world applications

Link to Rich Model Language?

Predrag Janičić, Filip Marić Uniform Reduction to SMT


	Motivation
	Motivation

	Specification Language
	The Basic Idea
	Toy example
	Expressiveness

	Interpretation
	Interpretation
	Toy Example

	Implementation and Examples
	Overall Architecture
	Implementation
	CSP Example
	Verification Example
	Sample Experimental Data

	Conclusions and Further Work
	Conclusions
	Current and Further Work


