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Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

Motivation

Motivation

SAT/SMT solvers are widely used, but encoding to SAT/SMT
is typically made by special-purpose tools

There are interchange formats for SAT/SMT (e.g., SMT-lib)
but no high-level specification languages

Goal: Build a new modelling and solving system (for CSP,
verification problems, etc.) with:

simple but expressible, high-level specification language
efficient interface to powerful SAT/SMT solvers
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The Basic Idea

Consider problems of the form: find values that satisfy given
conditions

It is often hard to develop an efficient specialized procedure
that finds required values

It is often easy to specify an imperative test if given values
satisfy the conditions

Such test can be a problem specification itself

Convert this imperative specification to a SAT/SMT formula
and use solvers to search for its models

Predrag Janičić, Filip Marić Uniform Reduction to SMT



Motivation
Specification Language

Interpretation
Implementation and Examples
Conclusions and Further Work

The Basic Idea
Toy example
Expressiveness

Toy example

Alice picked a number and added 3. Then she doubled what
she got. If the sum of the two numbers that Alice got is 12,
what is the number that she picked?

A simple test cthat A is indeed Alice’s number:
B:=A+3;
C:=2*B;
assert(B+C==12);

This test is a specification of the problem

Unknowns are exactly the variables that were accessed before
they were assigned a value
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Expressiveness

The C-like specification language supports:

integer and Boolean data types; arrays
implicit casting
arithmetical, logical, relational and bit-wise operators
flow-control statements (if, for, while)
defined and undefined functions

Restriction: conditions in the if, for, while statements and
array indices must be ground (cannot contain unknowns)
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Interpretation

Specifications are symbolically executed

The semantics is different from the standard semantics of
imperative languages (e.g., undefined variables can be
accessed)

The result of the interpretation is a quantifier free FOL
formula

This formula is passed to a SAT/SMT solver

If it is satisfiable, its models give solutions of the problem
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Toy Example

Consider the code:
nB=nA+3;
nC=2*nB;
assert(nB+nC==12);

If A corresponds to the unknown nA, then the asserted
expression is evaluated to A + 3 + 2 ∗ (A + 3) == 12

An SMT solver (e.g., for BVA or LIA) can confirm that the
formula is satisfiable (and is true for A equals 1)
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Overall Architecture

URSA MAJOR problem specification
↓ interpreter

Quantifier free FOL formula
↓ bitblasting

Propositional formula

↓ SAT solver ↓ SMT (BVA,LA,...) solver

Values of unknowns/Solutions
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Implementation

The tool URSA Major (Uniform Reduction to SAtisfiability
Modulo Theory)

Implemented in C++

Employs a subsystem for bitblasting and reduction to SAT

Currently: SAT solvers – ArgoSAT and Clasp, SMT (BVA,
LIA, EUF, ...) solvers – MathSAT, Yices, Boolector

Under constant development (support for new underlying
theories and solvers being added)
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CSP Example: The Eight Queens Puzzle

nDim=8;

bDomain = true;

bNoCapture = true;

for(ni=0; ni<nDim; ni++) {
bDomain &&= (n[ni]<nDim);

for(nj=0; nj<nDim; nj++)

if(ni!=nj) {
bNoCapture &&= (n[ni]!=n[nj]);

bNoCapture &&= (ni+n[nj]!=nj+ n[ni]) && (ni+n[ni] != nj+n[nj]);

}
}
assert(bDomain && bNoCapture);
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Verification Example: Bit-counters

function nBC1(nX) {
nBC1 = 0;

for (nI = 0; nI < 16; nI++)

nBC1 += nX & (1 << nI) ? 1 : 0;

}
function nBC2(nX) {

nBC2 = nX;

nBC2 = (nc2 & 0x5555) + (nc2>>1 & 0x5555);

nBC2 = (nc2 & 0x3333) + (nc2>>2 & 0x3333);

nBC2 = (nc2 & 0x0077) + (nc2>>4 & 0x0077);

nBC2 = (nc2 & 0x000F) + (nc2>>8 & 0x000F);

}
assert(nBC1(nX)!=nBC2(nX));
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Best Underlying Solver?

There is no best underlying solver

Each of the used solvers was most efficient for some problem

This shows that different solvers should be used within the
system

For instance, for the magic square problem and the queens
problem SAT solver Clasp was the most efficient
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Sample Experimental Data

Problem: N queens problem (all solutions)
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Conclusions

A novel (imperative-declarative) programming paradigm

The user controls the encoding employed

Applicable to a wide range of problems (e.g., for all NP
problems there is a simple witness test)

Competitive to other modelling systems

A high level interface to SMT

Can be used for producing benchmarks
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Current and Further Work

Support for more theories and SAT/SMT solvers

Providing APIs for standard programming languages

Real-world applications

Link to Rich Model Language?
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