Extending the BTOR Language

Armin Biere and Florian Lonsing

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

SVARM’10
Edinburgh, UK

July 20, 2010

Overview

e overview of the current BTOR language: bit-vectors & arrays

e proposed extensions
— tables
— functions
— quantifiers
— commands

— types

e design decisions, related work and conclusions

BTOR

e BTOR = native language of SMT solver Boolector
— corresponds to QF _ABV of SMT-LIB no quantifiers
— but bit-vectors (BV),
— arrays (A) and actually an extensional theory of arrays

— even a sequential extension for model checking see BPR'08

e ecasy to parse, strongly typed, clean BV semantics

— division by zero is fully defined undefined in SMT-LIB

e all operators / constructors correspond to APl calls of 1libboolector.a

e Boolector recently released under GPL http://fmv.jku.at/boolector

Bit-Vector Example (1/2)

a s w DD

var 32 6 add 32 1 2
var 32 7 mul 32 3 6
constd 32 73 8 ult 1 7 3
udiv 32 1 2 9 and 1 5 8
eq 1 3 4 10 root 1 9

first column: id

1d op bw i1d_or_numx

second column: operator

third column: bit-width of result

other columns: id’s of operands, or immediates

Bit-Vector Example (2/2)

2
mul
2
Y
constd
add
73
1
var var
32 32

Bit-Vector Constructors

® vVar
— bit-width

— optional string for back annotation

e const for binary constants

e constd for decimal constants

e consth for hexa-decimal constants

1 var 16 x

2 const 4 1101

3 constd 4 13

3 consth 4 d

Unary Bit-Vector Operators

1 var 32

2 var 32
class operators wi | wy 3 not 32 1
negation | not, neg n | n 4 not 32 2
reduction | redand, redor, redxor | n | 1 5 or 32 -3 -4
arithmetic | inc, dec n | n 6 and 32 1 2

7T eqg 1l 5 -6

8 root 1 -7

e one’s complement not

— can also be expressed by a minus in front of an operand as in AlG’s

e two’s complement neg

e reduction operators from Verilog

e increment and decrement by one

Binary Bit-Vector Operators

class operators w|y wp Wy
bitwise and, or, xor, nand, nor, xnor n o n n
boolean implies, iff 1 1 1
. . add, sub, mul, urem, srem
arithmetic : : n o n n
udiv, sdiv, [us]mod,
. eq, ne, ult,
relational slt, [us]lte, [us]gt, [us]gte o :
shift sll, srl, sra, ror, rol n logon n
overflow [us]addo, [us]subo, [us]mulo, sdivo | n n 1
concatenation | concat n ny np+n

e unsigned and signed context

e second operand of shift-operations has bit-width logon

Ternary and Miscallenous Bit-Vector Operators

class operators | wy | wy | w3 | wy
conditional | cond 1 | n| n|n
cond as the only ternary operator
class | operators | wy | upper | lower Wy
extract | slice n u [u—1[>+1
slice extracts bits out of a bit-vector

if-then-else

operands are immediates

Arrays (1/2)

e BTOR supports one-dimensional bit-vector arrays

— multi-dimensional arrays can be simulated by concat of operands

e constructor

— array e 1
1 array 32 8

— elements have bit-width e 4 GB of memory

— indices have bit-width i, i.e. size is 2+

e array access
— read can be used to model uninterpreted functions

— write updates of arrays / functions

Arrays (2/2)

e if-then-else on arrays

— 1d acond ew iw cond then else

e comparing arrays
— arrays of the same type can be compared for equality with eq

— two arrays are equal iff their elements are equal

e thus we have an extensional theory of arrays
— can be used for comparing memory “before” and “after”

— for instance equivalence checking of basic blocks in C with pointers

Array Example (1/2)

1
2
3
4
5
6
7

8
9

10 write 32 8 1 3 4

array 32 8
array 32 8

var

var

var

var

var

var

var

8
32
8
32
8
32
1

11
12
13
14
15
16
17
18
19

write 32 8 1 5 6
acond 32 8 9 10 11
write 32 8 2 7 8
eq 1 12 13

read 32 12 5

read 32 13 5

eq 1 15 16

and 1 14 17

root 1 18

e write and acond return an array of type 32 8

e read returns a bit-vector of bit-width 32

Array Example (2/2)

\
e‘g O

we

var

var

32

var array
3 1 328
2 3
var var array var
32 8 328 32

/

var

Design Decisions

e ecasy to parse
— numerical ids, thus no symbol table
— simple single pass parser: read line by line

— no yacc/lex, no recursive decent necessary

e also not hard to write / print, since there is no need for pretty printing

— asin parsing: simple non-recursive implementation

e easy to script
awk ’{a[$2]++}END{for(k in a)printf "%-7s%d\n", k, alkl]}’ | sort -n -k 2

e strongly typed + fixed precise semantics

Tables

1 table 3 8 1 array 3 3
00000000 2 const 3 000
00000001 3 const 8 00000000
00000011 4 write 3 8 1 2 3
00000010 5 const 3 001
00000110 6 const 8 00000001
00000111 7 write 3 8 4 5 6
00000101 8 const 3 010
00000100 9 const 8 00000010
10 write 3 8 7 8 9
e initialization of constant memory 3-bit gray code in the example

— used to model lookup-tables in programs

— will also be useful as internal operator

e related zero initialized memory: 1 zarray 32 8

Functions

e functions on bit-vectors are simply arrays without updates / write

e adding uninterpreted functions is a matter of syntatic sugar

1 fun 32 8 1 array 32 8
2 var 32 2 var 32
3 apply 8 1 2 3 read 8 1 2

e functions and arrays should be allowed to have multiple arguments

1 fun 32 1 8 1l array 32 1 8
2 var 32 2 var 32

3 var 1 3 var 1

4 apply 8 1 2 3 4 read 8 1 2 3

same applies to other associative operators

— concat, and, ...

Quantifiers

e many verification (if not most) only need bit-vectors + arrays + quantifiers
example: Vi, jl0 <i<j<n—ali| <alj]]

e first consider quantifiers over indices: Vx[dylx=y] over 32-bit

1 var 32 x
2 var 32y
3 eqgl 1 2
4 exists 1 3 2
3 forall 1 1 4

e methods for quantification
— bit-blasting to QBF needs (more) efficient QBF solvers

— template based matching yesterday’s talk by Leonardo de Moura

Commands

“ASCII API” to make Boolector “scriptable”

e add all current API functions to BTOR format

— assert, assume, sat, deref, ...

e add new features to APl and BTOR

— push, pop, failed, core, proof, ...

e APl is mostly the same as for plain SAT solvers such as PicoSAT

Types

basic types

— bool, term, int, real, ...

e constructors

— bv, array, fun, ...

e replace bit-with argument at 3rd column by type id

e also merges “acond” and “cond” etc.

Related Work

e DIMACS, AIGER
— based on the same similar principles as BTOR, e.g. only numeric id’s

— DIMACS = CNF, AIGER = AIG’s

e Simplify, CVC, Z3, Spear native input formats
— compromise between easy to read Simplify / CVC and

— compact / easy to parse Z3 / Spear

e SMT-LIB, TPTP
— extensible human-readable LISP/Prolog like syntax

— SMT-LIB 2.0 is “scriptable”, i.e. specifies “commands”

Conclusion

BTOR is a clean and simple format for BV with arrays

extensions needed in applications
— without changing expressiveness: tables + functions + scripts

— theory extensions: quantifiers + types

e could be a starting point for a compact SMT format

— maybe even a binary format

e finally we need to extend Boolector to support all this

