Automated
Software Reliability

George Candea

School of Computer & Communication Sciences
EPFL (Lausanne, Switzerland)

ML

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

eeeeeeeeeeee

We are forced to take
the reliability of software
on faith

http://dslab.epfl.ch

010011010011
110101001010
010010000001
010111010011
110110010110
011011000011

RTL8029.SYS

George Candea Automated Software Reliability Services

Faith-based Industry

e Programmers write code, then mostly
hope for the best

e Users trust software providers to test the code
thoroughly

e Cannot assess the reliability of a software system
before using it

George Candea Automated Software Reliability Services

Systems vs. Programs

¢ \We know how to build small things that work well

e But a real-world system is ...
e complex — millions of lines of code (MLOC)
e written by 100s of programmers in many languages
e many threads running in parallel

e implicit, vague specifications

George Candea Automated Software Reliability Services

George Candea

Systems vs. Programs

¢ \We know how to build small things that work well

e But a real-world system is ...
e complex — millions of lines of code (MLOC)
e written by 100s of programmers in many languages
e many threads running in parallel

e implicit, vague specifications

Bug-free programs # Bug-free systems

Automated Software Reliability Services

George Candea Automated Software Reliability Services http://dslab.epfl.ch

Debug

Test

Certify
A

Y4
4

Correct =aa="

George Candea Automated Software Reliability Services http://dslab.epfl.ch

Tools & Systems

Core
Techs

Automation

(" Automated Testing)

(Automated Debugging)

(Automated Correcting’

(Scalable Certification)

DDT
Test proprietary code

LFI

Test recovery code

ConfErr & WebErr
Human error testing

ESD
Execution synthesis

Portend
Date race classifier

Dimmunix
Deadlock immunity

RevNIC
Reverse engineering

iProve
End-user verifiability
IQA

Rating & certification

Cloud?9 - Cluster-based parallel symbolic execution

S2E - Selective symbolic execution of full software stacks

George Candea

Automated Software Reliability Services

http://dslab.epfl.ch

Outline

1. The S2E Platform

® PBackground
e S?E: The Theory
e S?F: The System

2. Three Use Cases

3. Automated Software Reliability Services (AutoSRS)

George Candea Automated Software Reliability Services

S2E

platform for building
analysis tools that are
multi-path and

INn-vivo

George Candea Automated Software Reliability Services

Bug Finding

$./prog

int main(argc, argv) OK

t $./prog ABC

if (argc == 2) .
S tat fault
printf (“%c”, *argv[2]):; egmentation fau

g $ valgrind ./prog ABC

printf (“OK”) ; - Invalid read of size 1
} - main (prog.c:4)

. .
. .
''''''

George Candea Automated Software Reliability Services

Other Examples

e Security analysis
® Program verification

e Performance profiling

Analysis =
check properties of execution paths

George Candea Automated Software Reliability Services

Multi-Path Analysis

int main(argc, argv)
{
if (argc == 2)
printf (“%c”, *argv[2]);
argc # 2 argc = 2

v

Simultaneously analyze multiple paths

printf (“OK”) ;
}

George Candea Automated Software Reliability Services http://dslab.epfl.ch

In-Vivo Analysis

In Vitro In Vivo

In-Vivo Analysis

In Vitro In Vivo

Analyze entire software stack

George Candea Automated Software Reliability Services

Single-Path In-Vitro

User-mode
program

OS Kernel

George Candea Automated Software Reliability Services

George Candea

Sitgte<eTh W0

Multi-Path In-Vivo

User-mode
program

OS Kernel

Automated Software Reliability Services

User-mode
program

OS Kernel

Path Explorer

S°E platform =
path exploration + path analysis

George Candea Automated Software Reliability Services

George Candea

Challenge: Path Explosion

system size

of paths = 2

e Cannot analyze all paths = select only some

¢ which paths you choose can make a big difference

¢ S°E enables making this choice analysis-specific

Automated Software Reliability Services

Outline

1. The S2E Platform

® PBackground
=»o S°F: The Theory
e S?F: The System

2. Three Use Cases

3. Automated Software Reliability Services

George Candea Automated Software Reliability Services

George Candea

Unit vs. Environment

int main(argc, argv) Program Other progs
{

1t (arge == 0) { Libraries

}

p = malloc(...); OS Kernel

if (p == NULL) {

} Hardware

}

Automated Software Reliability Services

George Candea

Unit vs. Environment

int main(argc, argv) Program r progs
{

if (argc == 0) { Libraries

}
p = malloc(...); OS Kernel
if (p == NULL) {

} Hardware

}

Input

Automated Software Reliability Services

Thorough Automated Testing

System Input

int main(argc, argv) {

Environment

George Candea Automated Software Reliability Services

Thorough Automated Testing

System Input

Environment

George Candea Automated Software Reliability Services

Thorough Automated Testing

System Input

int main(argc, argv) {
if (argc == 0) {
} ..
p = malloc(...)

if (p == NULL) {
Lo
} Unit

George Candea

Zero false negatives
Zero false positives

argc==

False

p==NULL

True False True False

Environment

Automated Software Reliability Services

George Candea

Key Observation

Program r progs
int main(argc, argv)
{ Libraries
if (argc == 0) {

| T OS Kernel

p = malloc(...);
if (p == NOULL) { Hardware

}
}

Input

Provide illusion of full-system analysis

Automated Software Reliability Services

George Candea

Consistent Execution

e Path selection must be done carefully...

preserve illusion of full-system analysis

unit/environment interaction must be realistic

preserve efficiency (explore minimum # of paths necessary)

Unit

Environment

Automated Software Reliability Services

Examples of Inconsistency

e Allow some paths to clobber other paths’ state
e happens when environment changes are not isolated
® occurs in test generation systems (DART, EXE, ...)

e Use models of the environment

e models (by definition) exhibit behavioral differences

e model checkers, symbolic exec engines (SLAM, KLEE, ...)

In S°E, each path has its own real environment

George Candea Automated Software Reliability Services

Execution Consistency Models

® Execution Consistency Model = set of paths
® j.e., abstract specification of which paths to analyze

® j.e., grammar describing the paths of interest

® Execution is consistent iff its path belongs to ECM set

® Not the same as memory consistency models

® but similar in spirit

George Candea Automated Software Reliability Services

SC-UE (SC Unit-level Exec)

Much fewer paths
False negatives ?

nt main(argc, argv) {

Environment

eeeeeeeee dea Automated Software Reliability Services

Relaxed Consistency (RC)

Unit Input

int main(argc, argv) ({

if (p == NULL) {
Lo
Unit

Environment

George Candea Automated Software Reliability Services

Relaxed Consistency (RC)

No false negatives

Unit Input

int main(arge, argv) f{ Multi-valued return

if (argec == 1) { p’e€{p, NULL}

Environment

George Candea Automated Software Reliability Services

Relaxed Consistency (RC)

No false negatives
False positives ?

Unit Input

int main(argc, argv) f{ Multi-valued return

if (argec == 1) { p’e€{p, NULL}

Environment

George Candea Automated Software Reliability Services

Local Consistency (LC)

Unit Input

int main(argc, argv) {
if (arge == 1) { Interface annotation
} S malloc() — {p,NULL}

p = malloc(...)

Unit

Environment

George Candea Automated Software Reliability Services

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

. ». -
-~

Zero False Positives

@@

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

Zero FPs

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

. >.]
False Positives

@@

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Lanaea Automartea >ojtware Kelanility Services http://dslab.epfl.ch

Mix & Match

e ECM = specification of paths to be explored

o S2E underneath the covers explores the requested paths

e (Can make principled trade-offs

® FPs vs. FNs vs. exploration+analysis performance

® Minimize the number of explored paths

e all the paths in the ECM set, but none extra

Can implement any exec. consistency model

George Candea Automated Software Reliability Services

Outline

1. The S2E Platform

® PBackground

e S?E: The Theory
=»e S2°F: The System
2. Three Use Cases

3. Automated Software Reliability Services

George Candea Automated Software Reliability Services

Symbolic Execution

int func(int x, int y)

{
if (x < 0) { Q *
iy So
}
NY W N o (VA
/'
if (y > 0) { /7 \> 4/ \b
)
)

George Candea Automated Software Reliability Services

George Candea

Concrete —» Symbolic

int main(ézgg, axqy) |
if (argc == 0) {

}

p = malloc(...);

if (p == NULL) {

}

prog

Libraries

Kernel

Hardware

Input

Automated Software Reliability Services

Symbolic & Concrete

int main(argec, argv) { Unit

if (argc == 0) { \
}

p = malloc(...); Environment

if (p == NULL) {

}

George Candea Automated Software Reliability Services

Symbolic & Concrete

int main(argec, argv) { Unit

if (argc == 0) { \
}

p = malloc(...); Environment
if (p == NULL) ({

}

George Candea Automated Software Reliability Services

Symbolic & Concrete

int main(argc, argv) { Unit

if (argc == 0) { \
}

p = malloc(...); Environment
if (p == NULL) ({

}

George Candea Automated Software Reliability Services

George Candea

Selective Symbolic Execution

X
int main (3xggc, argy) {

if (argc == 0) {

} Libraries

128

p = malloc(®.); Kernel

if (p == NULL) ({
Hardware
}

. Input

Automated Software Reliability Services

George Candea

Selective Symbolic Execution

X
int main (3xggc, argy) {

if (argc == 0) {

} Libraries

128

p = malloc(®.); Kernel

if (p == NULL) ({
Hardware
}

. Input

Automated Software Reliability Services

George Candea

The S2E System

applications
libraries

operating system .
kernel drivers

virtual VM phys virtual
CPU memory devices

dynam|c

binary——, /Symbolic
translatlon LLVM executlon

/QEMU KLEE

real real phys real
CPU memory devices

Customized
virtual machine

Automated Software Reliability Services

The S2E System

applications

- Runs unmodified x86 binaries
libraries (incl. proprietary/obfuscated/

operating SYV encrypted binaries)
kernel drivers

virtual VM phys virtual | Customized
CPU memory devices|virtual machine

dynam|c
binary——, /Symbolic
translatlon LLVM executlon

/QEI\/IU KLEE

real real phys real
CPU memory devices

George Candea Automated Software Reliability Services

The S2E System

applications

M Runs unmodified x86 binaries
libraries (incl. proprietary/obfuscated/

operating system/ encrypted binaries)
kernel drivers

virtual VM phys virtual | Customized
CPU___memory | devices|yirtual machine

d%/_namic ool
inarv— symbolic : :
translatYon i execution Selection done at runtime

Most code runs “natively”
W KLEE

real real phys real
CPU memory devices

George Candea Automated Software Reliability Services

The S2E System

applications

M Runs unmodified x86 binaries
libraries (incl. proprietary/obfuscated/

operating system/ encrypted binaries)
kernel drivers

virtual VM phys virtual | Customized
CPU memory devices|virtual machine

dynam|c

binary——, /Symbolic : :
translatlon vy execuhon Selection done at runtime

Most code runs “natively”
/QEI\/IU

KLEE

real realphys real |Shared concrete/symbolic
CPU memory devices |state representation

George Candea Automated Software Reliability Services

Lazy+Selective Conversion

buf Application

Libraries Avoids unnecessary

concretization
Kernel

Block device driver

George Candea Automated Software Reliability Services

Lazy+Selective Conversion

Application
Libraries Avoids unnecessary
concretization
Kernel

Block device driver
buf

George Candea Automated Software Reliability Services

Lazy+Selective Conversion

Application
Libraries Avoids unnecessary
concretization
Kernel

Block device driver
\ if (buff0]==3) ...

buf /

George Candea Automated Software Reliability Services

Lazy+Selective Conversion

Application
Libraries Avoids unnecessary
concretization
Kernel

Block device driver
\ if (buff0]==3) ...

/
buf (buf[0]=3)

George Candea Automated Software Reliability Services

S2E User’s View

selection
interface

- -
-~
~

user-defined
selectors

SZE stock
selectors

George Candea

.,

[}
[}
[}

applications
libraries

operating system .
kernel drivers

virtual = VM phys | virtual
CPU memory devices

dynam|c

binary——, /Symbolic
translahon LLVM executlon

/QEI\/IU KLEE

real real phys real
CPU memory @ devices

Automated Software Reliability Services

analysis
interface

--
‘—

*IZ| user—deﬁned
:'ana yzers

{ 1
S2E stock
':Iana lyzers

{1

http://dslab.epfl.ch

S2E User’s View

selection
interface

- -
-~
~

user-defined
selectors

SZE stock
selectors

George Candea

.,

[}
[}
[}

applications
libraries

operating system .
kernel drivers

virtual = VM phys | virtual
CPU memory devices

dynam|c

binary——, /Symbolic
translahon LLVM executlon

/QEI\/IU KLEE

real real phys real
CPU memory @ devices

Automated Software Reliability Services

analysis
interface

--
‘—

*IZ| user—deﬁned
:'ana yzers

{ 1
S2E stock
':Iana lyzers

{1

http://dslab.epfl.ch

Key S°E Feature

r

-

\

Symbolic

Mode

r

\

Concrete

J

A

_

Mode

J

Ox5BF3

Execution weaves between symbolic/concrete
transparently, efficiently, and consistently

George Candea

Automated Software Reliability Services

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

+ more inputs + more inputs >
based on knowl- based on knowl-
edge of constraints edge of constraints
from within the unit from environment

+ relax constraints at unit/
environment boundary con-
sistently with environment
interface specification
+ arbitrarily relax
constraints at
unit/environment
<bouna’ary

+ arbitrarily relax
constraints

anywhere
-

&

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

+ more inputs + more inputs =
based on knowl- based on knowl-
edge of constraints edge of constraints
from within the unit from environment

+ relax constraints at unit/
environment boundary con-
sistently with environment
interface specification
+ arbitrarily relax
constraints at
unit/environment
<bouna’ary

+ arbitrarily relax
constraints

anywhere
-

&

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

+ more inputs + more inputs >
based on knowl- based on knowl-
edge of constraints edge of constraints
from within the unit from environment

+ relax constraints at unit/
environment boundary con-
sistently with environment
interface specification
+ arbitrarily relax
constraints at
unit/environment
<bouna’ary

+ arbitrarily relax
constraints

anywhere
-

&

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

+ more inputs + more inputs >
based on knowl- based on knowl-
edge of constraints edge of constraints
from within the unit from environment

+ relax constraints at unit/
environment boundary con-
sistently with environment
interface specification
+ arbitrarily relax
constraints at
unit/environment
<bozma’ary

+ arbitrarily relax
constraints

anywhere
-

&

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE SC-UE SC-SE

Strictly consistent Strictly consistent Strictly consistent
concrete execution unit-level execution system-level execution

+ more inputs + more inputs >
based on knowl- based on knowl-
edge of constraints edge of constraints
from within the unit from environment

+ relax constraints at unit/
environment boundary con-
sistently with environment
interface specification
+ arbitrarily relax
constraints at
unit/environment
<bouna’ary

+ arbitrarily relax
constraints

anywhere
-

&

RC-CC RC-OC LC

CFG consistency Overapproximate consistency Local consistency

George Candea Automated Software Reliability Services http://dslab.epfl.ch

SC-CE

Strictly consistent
concrete execution

SC-UE

Strictly consistent
unit-level execution

SC-SE

Strictly consistent
system-level execution

Classic fuzzing
(most real-world
testing)

Dynamic symbolic &
concolic execution
engines

(DART, EXE)

Symbolic execution
engines with
environment models
(KLEE)

Most disassemblers

Automated reverse
engineering (RevNIC)

Some automated
testing tools (DDT)

RC-CC

CFG consistency

George Candea

RC-OC

Overapproximate consistency

Automated Software Reliability Services

LC

Local consistency

http://dslab.epfl.ch

Outline

1. The S2E Platform

2. Three Use Cases
=3»® Finding bugs in proprietary software
® [everse engineering

® Performance profiling

3. Automated Software Reliability Services

George Candea Automated Software Reliability Services

George Candea Automated Software Reliability Services http://dslab.epfl.ch

DDT* Testing Tool

selection - analysis
interface applications interface
o libraries .
operating system _
kernel drivers
Y
user-deﬁned : '| | user-deﬁned
virtual VM phys | virtual
selectors |:|' CPU memory devices|q __]analyzers
dynamlc { 1
SZE stock |nar symbolic S2E stock
selectors [} Yon/Lvm {_] analyzers

[}

George Candea

transl atlon LLVM executlon

/QEMU KLEE
real real phys real
CPU memory devices

Automated Software Reliability Services

{1

http://dslab.epfl.ch

DDT* Testing Tool

selection = analysis
interface applications interface
o libraries .
operating system _
kernel drivers
i €
user—deﬁned : '| | user-deﬁned
virtual VM phys virtual
selectors |:|' CPU memory devices|q _ |analyzers
dynamic {]
SZE stock bmar A, /symbolic S2E stock
selectors :I' Yor 'IZI analyzers

[}

George Candea

transl atlon LLVM executlon

/QEMU KLEE
real real phys real
CPU memory devices

Automated Software Reliability Services

{1

http://dslab.epfl.ch

DDT*
. [}
e Path exploration 22%%&%?;%
e | C (local consistency) for OS/driver interface

e RC (relaxed consistency) for driver/HW interface

e Path Analysis] userydefinee
e Off-the-shelf single-path checkers ESZElstock
Eana yzers

e Qur own VM-level analyzers (incl. coverage counter)

e Results of analysis

¢ find bugs = executable traces (inputs, instructions, ...)

e traces prove presence of the bugs + help fix the bugs

George Candea Automated Software Reliability Services

Symbolic Hardware

e Symbolic HW inputs, symbolic interrupts, etc.
e Jest without having the real hardware

e Test for bad hardware behaviors

applications
libraries

operating system _
kernel drivers

virtual =~ VM phys | virtua
CPU memory devices

George Candea Automated Software Reliability Services

George Candea

Tested Driver

Bug Type

RTL8029 Resource leak
RTL8029 Memory corruption
RTL8029 Race condition
RTL8029 Segmentation fault
RTL8029 Segmentation fault
AMD PCNet Resource leak
AMD PCNet Resource leak
Ensoniq AudioPCI Segmentation fault
Ensoniq AudioPCI Segmentation fault
Ensoniq AudioPCI Race condition
Ensoniq AudioPCI Race condition
Intel Pro/1000 Memory leak

Intel Pro/100 (DDK)

Kernel crash

Intel 82801AA AC97

Race condition

Automated Software Reliability Services

O

CER.TIFIED FOR
Windows
Vistas

Analysis Time < 20 minutes

f

100 %

80 % |

60 % r

[r

40 % r

Basic Block Coverage (%)

20 % _
RTL8029 ——

Intel Pro/100 —=—

Intpl 82801 AA AC97 ——

0 1 2 3 4 5 6
Running Time (minutes)

George Candea Automated Software Reliability Services

Outline

1. The S2E Platform

2. Three Use Cases
® finding bugs in proprietary software
=P o [everse engineering

® Performance profiling

3. Automated Software Reliability Services

George Candea Automated Software Reliability Services

RevNIC* Reverse Engineering

applications
libraries

operating system .
kernel drivers

virtual = VM phys virtual user-defined

CPU memory devices|q __|analyzers \

. . Driver/Hardware
RevNIC Code 4~ |interaction traces
Synthesizer

o J

[Synthetic Driver J

George Candea Automated Software Reliability Services http://dslab.epfl.ch

Automated Porting

Windows

/N

Windows Linux KitOS

VMware

x86 PC QEMU

nC/0S I

FPGA4U

ware Relia

bility Services

PROFs: Performance Profiling

1,645 * Apache URL parser
Instructions
e Microsoft IS SSL module
¢ | ua language interpreter

e Various utilities

ping 129,086
instructions

George Candea Automated Software Reliability Services

Multi-Path In-Vivo Profiling

User-mode
program

s

Valgrind

T ==== Oprofile

OS Kernel

Multi-Path In-Vivo Profiling

User-mode
program
Valgrind
=== Qprofile
== PROFs

OS Kernel

S2E Improves Productivity

rPROF;

20 person-hours
767 lines of code

.

\

J

r RevNIC*

40 person-hours’
580 lines of code

\.

~\

DDT™

38 person-hours
720 lines of code

J

\.

N

J

-S2E Platform

> 100,000 lines of code
47,000 lines of new code

George Candea

Automated Software Reliability Servic

es

S2E in a Nutshell

e Platform for building in-vivo multi-path analysis tools
e Selective symbolic execution of x86 binaries

e EXxecution consistency models

http://s2e.epfl.ch

Ready-for-use VM, demos, tutorials,

source code, documentation
_ J

George Candea Automated Software Reliability Services

Outline

1. The S2E Platform

2. Three Use Cases

® Jesting of proprietary software
® [everse engineering

® Performance profiling

3. Automated Software Reliability Services

George Candea Automated Software Reliability Services

July 4, 1996

George Candea Automated Software Reliability Services http://dslab.epfl.ch

January 12, 2011

O]

-numbers/

rnet-2010-in

m.com/2011/01/12/inte

http://royal.pingdo

27% of humanity uses email

George Candea Automated Software Reliability Services http://dslab.epfl.ch

Webmalil Is ...

Easy to use +
Accessible from anywhere +
Free

Used by billions of people

Recipe for miracles

George Candea Automated Software Reliability Services

Replicate the Miracle ?

e How do we get all the world’s programmers
to use the very best testing tools?

e How do we empower end users to demand
better quality from the software they use?

Software reliability as a service

George Candea Automated Software Reliability Services

George Candea

AutoSRS

1. Testing service
2. Debugging service
3. End-user service

4. Certification/ranking service

Automated Software Reliability Services

1. Testing Service

George Candea Automated Software Reliability Services

-

2. Debugging Service

Bug report N ','
>

Program :'
' Automated
' Debugging

v Service
Explanation < '
‘\

Classic Suggestions Tl -

Debugger for how to fix

George Candea Automated Software Reliability Services http://dslab.epfl.ch

George Candea

3. End-User Service

http://test.epfl.ch

Bug Type
Resource leak
Memory corruption
Race condition
Segmentation fault

Segmentation fault

Upload file

RTL8029.SYS

Type
Severity Description Replay Trace
o0 Does not call NdisCloseConfiguration when initialization fails
@®@O®®® Does not check range of MaximumMulticastList registry
@O®O®® Interrupt arriving before timer initialization uses uninitialized data
000 Incorrectly handled unexpected OID in QueryInformation
(X X J SetInformation does not handle unexpected OID

Automated Software Reliability Services

http://dslab.epfl.ch

4. Certification/Rating Service

¢ Service for software consumers
e evaluate software reliability automatically

e publish results = enable product comparisons

e explain & quantify software reliability to consumers

e No certification => liability for damages

e do away with “AS IS” software licenses

George Candea Automated Software Reliability Services

Tools & Systems

1 Core

)
(@)
>
"

'--

" Automated Testing)

(Automated Debugging)

 Automated Correcting)

(Scalable Certification)

DDT

Test proprietary code

LFI

Test recovery code

ConfErr & WebErr
Human error testing

ESD

Execution synthesis

Portend
Date race classifier

Dimmunix
Deadlock immunity

RevNIC
Reverse engineering

iProve
End-user verifiability
IQA

Rating & certification

Cloud?9 - Cluster-based parallel symbolic execution

S2E - Selective symbolic execution of full software stacks

AutoSRS - Automated Software Reliability Services

L] “
L |
- -
.--- ----
el R N R EEEREE R

http://dslab.epfl.ch

George Candea

Automated Software Reliability Services

http://dslab.epfl.ch

