Analysis and Verification of Higher Order Functional Programs: Automata-Theoretic Approach

Ruslán Ledesma Garza
Technische Universität München
ledesmag@in.tum.de

Andrey Rybalchenko
Technische Universität München rybal@in.tum.de

Automata-theoretic approach

- Only requires reachability and fair termination verifiers
- A standard method for imperative programs

Automata-theoretic approach applied to temporal verification of Ocaml programs with high-order procedures

Our work

- Monitoring for evaluation trees
- Product construction
- Evaluation

Our work

- Monitoring for evaluation trees

Product construction

Evaluation

A simple program

$1+2$

Evaluation judgement

$\emptyset \vdash 1+2 \Rightarrow 3$

Evaluation tree

$$
\begin{array}{ccc}
\hline \emptyset \vdash 2 \Rightarrow 2 & \emptyset \vdash 1 \Rightarrow 1 & \emptyset \vdash+\Rightarrow+ \\
& \emptyset \vdash 1+2 \Rightarrow 3
\end{array}
$$

Evaluation of $1+2$

$\emptyset \vdash 1+2 \Rightarrow$

Evaluation of 1+2

$\emptyset \vdash 2 \Rightarrow$

$$
\emptyset \vdash 1+2 \Rightarrow
$$

Evaluation of 1+2

$\emptyset \vdash 2 \Rightarrow 2$
$\emptyset \vdash 1+2 \Rightarrow$

Evaluation of $1+2$

$$
\begin{array}{ll}
\hline \emptyset \vdash 2 \Rightarrow 2 & \emptyset \vdash 1 \Rightarrow \\
& \emptyset \vdash 1+2 \Rightarrow
\end{array}
$$

Evaluation of 1+2

$$
\begin{aligned}
& \hline \emptyset \vdash 2 \Rightarrow 2 \emptyset \vdash 1 \Rightarrow 1 \\
& \emptyset \vdash 1+2 \Rightarrow
\end{aligned}
$$

Evaluation of 1+2

$$
\begin{gathered}
\emptyset \vdash 2 \Rightarrow 2 \\
\emptyset \vdash 1 \Rightarrow 1 \\
\emptyset \vdash 1+2 \Rightarrow
\end{gathered}
$$

Evaluation of 1+2

$$
\begin{array}{lll}
& \emptyset \vdash 1 \Rightarrow 1 & \emptyset \vdash+\Rightarrow+ \\
& \emptyset \vdash 1+2 \Rightarrow
\end{array}
$$

Evaluation of 1+2

$$
\begin{array}{ccc}
\hline \emptyset \vdash 2 \Rightarrow 2 & \emptyset \vdash 1 \Rightarrow 1 & \emptyset \vdash+\Rightarrow+ \\
& \emptyset \vdash 1+2 \Rightarrow 3
\end{array}
$$

A simple monitor

Count additions

$1+2$

Monitored tree

$$
\begin{array}{ccc}
\overline{\sigma_{2}^{\uparrow} \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow}} & \overline{\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}} & \\
\sigma_{1}^{\uparrow \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow \sigma_{1}^{\downarrow} \uparrow+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}} \\
\hline
\end{array}
$$

Monitored tree

Initial state: 0

$$
\begin{gathered}
\overline{\sigma_{2}^{\uparrow} \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow}} \quad \overline{\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}} \quad \\
\sigma_{1}^{\uparrow \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow \sigma_{1}^{\downarrow}}
\end{gathered}
$$

Monitoring of I+2

Initial state: $0<$ Current state

$$
\sigma_{2}^{\uparrow \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow}} \quad \overline{\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}} \quad \sigma_{4}^{\uparrow \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}}
$$

Monitoring of I+2

Initial state: $0<$ Current state

$\sigma_{2}^{\uparrow \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow}}$
$\overline{\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}}$
$\sigma_{4}^{\uparrow \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}}$
(0) $\uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow \sigma_{1}^{\downarrow}$

Monitoring of $1+2$

$$
\begin{aligned}
\overline{\sigma_{2}^{\uparrow \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow}}} \quad \frac{\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}}{} \quad & \begin{array}{l}
\sigma_{4}^{\uparrow \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}} \\
\\
\\
\\
\text { Current state }
\end{array}
\end{aligned}
$$

Monitoring of I+2

Monitoring of I+2

Monitoring of $1+2$

$0 \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow 0$	(0) $\uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}$	$\sigma_{4}^{\uparrow} \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}$
	$0 \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow$ ¢	

Monitoring of $1+2$

$\overline{0 \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow 0}$	$\overline{0 \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow 0}$	$\overline{\sigma_{4}^{\uparrow} \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}}$
$0 \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow \sigma_{1}^{\downarrow}$		

Monitoring of I+2

$0 \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow 0$	$0 \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow 0$	(0) \uparrow Ø $++\Rightarrow+\downarrow \sigma_{4}^{\downarrow}$
	$\uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow \sigma$	

Monitoring of I+2

Current state

Monitoring of I+2

Current state

$\overline{0 \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow 0}$	$\overline{0 \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow 0} \quad$	$\overline{0 \uparrow \emptyset \vdash+\Rightarrow+\downarrow 0}$
$0 \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow(1)$		

Addition counting monitor

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

Addition counting monitor

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

Monitor states

Addition counting monitor

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

Monitor states

Initial state

Addition counting

monitor

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

State transition function

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

$$
\rho_{+}(\sigma, j, \delta)=\left\{\begin{array}{lc}
\sigma+1 & \text { if } \delta=\downarrow \wedge \\
& \exists \mathcal{E}, e_{1}, e_{2}, v: j=\mathcal{E} \vdash e_{1}+e_{2} \Rightarrow v \\
\sigma & \text { otherwise }
\end{array}\right.
$$

State transition function

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

$$
\rho_{+}(\sigma, j, \delta)= \begin{cases}\sigma+1 & \text { if } \delta=\downarrow \wedge \\ & \exists \mathcal{E}, e_{1}, e_{2}, v: j=\mathcal{E} \vdash e_{1}+e_{2} \Rightarrow v \\ \sigma & \text { otherwise }\end{cases}
$$

(State X Judgement X Direction) \rightarrow State

State transition function

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

$$
\rho_{+}(\sigma, \mathcal{J}, \delta)= \begin{cases}\sigma+1 & \text { if } \delta=\downarrow \wedge \\ \sigma & \exists \mathcal{E}, e_{1}, e_{2}, v: j=\mathcal{E} \vdash e_{1}+e_{2} \Rightarrow v \\ \sigma & \text { otherwise }\end{cases}
$$

(State X Judgement X Direction) \rightarrow State

State transition function

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

$$
\rho_{+}(\sigma, \mathcal{J}, \mathcal{\delta})= \begin{cases}\sigma+1 & \text { if } \delta=\downarrow \wedge \\ & \exists \mathcal{E}, e_{1}, e_{2}, v: j=\mathcal{E} \vdash e_{1}+e_{2} \Rightarrow v \\ \sigma & \text { otherwise }\end{cases}
$$

(State X Judgement X Direction) \rightarrow State

State transition function

$$
\mathrm{M}_{+}=\left(\mathbb{N}, 0, \rho_{+}\right)
$$

$$
\rho_{+}(\sigma, \mathcal{J}, \mathcal{\delta})= \begin{cases}\sigma+1 & \begin{array}{c}
\text { if } \delta=\downarrow \wedge \\
\exists \mathcal{E}, e_{1}, e_{2}, v: j=\mathcal{E} \vdash e_{1}+e_{2} \Rightarrow v \\
\text { otherwise }
\end{array}\end{cases}
$$

(State X Judgement X Direction) \rightarrow State

Monitoring with ρ_{+}

$$
\begin{array}{cc}
\hline \sigma_{2}^{\uparrow} \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow} & \\
\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow} \\
& \sigma_{1}^{\uparrow} \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow \sigma_{1}^{\downarrow}
\end{array}
$$

$$
\rho_{+}(0,(\emptyset \vdash 1+2 \Rightarrow 3), \uparrow)
$$

Monitoring with ρ_{+}

$$
\begin{array}{ccc}
\overline{\sigma_{2}^{\uparrow} \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow}} & \overline{\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}} \quad & \sigma_{4}^{\uparrow \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}} \\
\sigma_{1}^{\uparrow \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow \sigma_{1}^{\downarrow}}
\end{array}
$$

$$
\rho_{+}(0,(\emptyset \vdash 1+2 \Rightarrow 3), \uparrow)
$$

Monitoring with ρ_{+}

$$
\rho_{+}(0,(\emptyset \vdash 1+2 \Rightarrow 3), \uparrow)
$$

Monitoring with ρ_{+}

$$
\begin{aligned}
\hline \sigma_{2}^{\uparrow} \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow} & \sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}
\end{aligned} \cdots \sigma_{4}^{\uparrow \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}}
$$

Monitoring with ρ_{+}

$\overline{(0) \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow \sigma_{2}^{\downarrow}} \quad \overline{\sigma_{3}^{\uparrow} \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow \sigma_{3}^{\downarrow}} \quad \overline{\sigma_{4}^{\uparrow} \uparrow \emptyset \vdash+\Rightarrow+\downarrow \sigma_{4}^{\downarrow}}$

Monitoring with ρ_{+}

Monitoring with ρ_{+}

$\frac{\overline{0 \uparrow \emptyset \vdash 2 \Rightarrow 2 \downarrow 0} \quad \frac{\overline{0 \uparrow \emptyset \vdash 1 \Rightarrow 1 \downarrow 0}}{0 \uparrow \emptyset \vdash 1+2 \Rightarrow 3 \downarrow 1} \overline{0 \uparrow \emptyset \vdash+\Rightarrow+\downarrow 0}}{\rho_{+}(0,(\emptyset \vdash 1+2 \Rightarrow 3), \downarrow)}$

Our work

- Monitoring for evaluation trees

Product construction

Evaluation

Our work

- Monitoring for evaluation trees
- Product construction

Evaluation

Product construction

User program

$$
\begin{aligned}
& \text { let } \mathrm{f} x= \\
& \text { if } x<0 \text { then } 0 \text { else } f(x-I)
\end{aligned}
$$

Product construction

User program

$$
\begin{aligned}
& \text { let } \mathrm{f} x= \\
& \text { if } x<0 \text { then } 0 \text { else } f(x-1)
\end{aligned}
$$

Monitoring code

Product construction

User program

Monitoring code

$$
\begin{aligned}
& \text { let } \mathrm{f} x= \\
& \text { if } \mathrm{x}<0 \text { then } 0 \text { else } \mathrm{f}(\mathrm{x}-\mathrm{I})
\end{aligned}
$$

$$
\operatorname{assert}(x>0)
$$

$$
\text { let } \mathrm{f} x=\text { if } \mathrm{x}<0 \text { then } 0 \text { else assert }(\mathrm{x}>0) \text {; } \mathrm{f}(\mathrm{x}-\mathrm{I})
$$

Monitor specification

$$
\mathrm{S}_{+}=(0, \text { mtrans_sum })
$$

Monitor specification

$$
\mathrm{S}_{+}=(0, \text { mtrans_sum })
$$

Initial state expression

Monitor specification

$$
\mathrm{S}_{+}=(0, \text { mtrans_sum })
$$

Initial state expression

State transformer procedure

State transformer

procedure

$$
\mathrm{S}_{+}=(0, \text { mtrans_sum })
$$

function mtrans_plus counter expression direction $=$ match expression, direction with
| <expr_patt< + \$_\$ >>, Down -> <expr_term< \$counter\$ + 1 >>
| _ -> counter

State transformer

procedure

$$
S_{+}=(0, \text { mtrans_sum })
$$

function mtrans_plus counter expression direction $=$ match expression, direction with
| <expr_patt< + \$_\$ >>, Down -> <expr_term< \$counter\$ + 1 >>
| _ -> counter

(State X Expression X Direction) \longrightarrow Monitoring code

State transformer

procedure

$$
S_{+}=(0, \text { mtrans_sum })
$$

function mtrans_plus counter expression direction $=$ match expression, direction with
| <expr_patt< + \$_\$ >>, Down ->
<expr_term< \$counter\$ + 1 >>
| _ -> Counter
(State X Expression X Direction) \longrightarrow Monitoring code

Product of $\mathrm{I}+2$ and M_{+}

$1+2$

Product of $I+2$ and M_{+}

let x _plus = (fun x_11 x_12 in
let x_1_plus_2
x_1_plus_2

$$
->x_{-} 11+x_{-} 12
$$

$$
=x_{-} p l u s 12 \text { in }
$$

Product of $\mathrm{I}+2$ and M_{+}

let x _plus =
(fun x_11 x_12 s_1_pre -> x_11 + x_12, s_1_pre) in
let x_1_plus_2, s_1_plus_2 = x_plus 12 s in x_1_plus_2, s_1_plus_2 + 1

High order program

let rec fold_left f accu l = match l with
| [] -> accu
| a::t ->

$$
\text { let accu' } \quad=f \text { accu } a
$$

in
fold_left f accu' t

High order product

let rec fold_left_m f accu l c = match l with

$$
\begin{aligned}
& \text { | [] -> accu, c } \\
& \text { a::t -> }
\end{aligned}
$$

let accu', c' = f accu a (c + 1) in fold_left_m f accu' t c'

High order product

let rec fold_left_m f ecu lc = match l with

$$
\begin{aligned}
& \text { | [] -> accu, c } \\
& \text { | a::t -> }
\end{aligned}
$$

let ecu', $c^{\prime}=f$ ecu a ($\left.c+1\right)$ in fold_left_m f ecu' tc'

High order product

let rec fold_left_m f accu l c = match l with

$$
\begin{aligned}
& \text { | [] -> accu, c } \\
& \text { a: :t -> } \\
& \text { let accu', } c^{\prime}=f \text { accu a }(c+1) \text { in } \\
& \text { fold_left_m } f \text { accu, } t \text { c, }
\end{aligned}
$$

Our work

- Monitoring for evaluation trees
- Product construction

Evaluation

Our work

- Monitoring for evaluation trees
- Product construction
- Evaluation

FunV

- Product construction algorithm

- Reachability checker Dsolve [1]
[1] M. Kawaguchi, P. M. Rondon, and R. Jhala. Type-based data structure verification. In PLDI, 2009.

Evaluation

- 600+ LOC

- 62 benchmarks [1-4]

Figure 8: Experiments

Evaluation

- 600+ LOC

- 62 benchmarks [1-4]
[1] M. Hofmann. A type system for bounded space and functional in-place update-extended abstract. In $E S O P, 2000$.
[2] M. Hofmann. The strength of non-size increasing computation. In POPL, 2002.
[3] M. Hofmann and S. Jost. Static prediction of heap space usage for firstorder functional programs. In POPL, 2003.
[4] N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order programs. In POPL, 2009.

Figure 8: Experiments.

Evaluation: benchmarks

- Recursion
- Higher-order functions
- Algebraic data types
- Abstract data types

Evaluation: properties

- Safety and termination
- Linear inequalities over values and measures
- Inclusion checks over sets of program values
- Ranking function/transition invariant checks

Demo

Conclusion

- Monitoring
- Product construction
- Evaluation

