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Introduction

• First (and most) significant subclass of regular languages.

• For a language L ⊂ A∗, the following conditions are equivalent:
◦ L is first-order definable (in the signature <)
◦ L is definable in linear temporal logic (past)
◦ L is star-free regular
◦ L is recognized by a counter-free automaton
◦ Syntactic monoid of L is aperiodic

• Note: Similar results hold for ω-regular star-free languages

• There is an algorithm to decide whether a given recognizable language is
star-free
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Aperiodic Sets

• A set X ⊂ A∗ is said to be aperiodic if there exists an integer n > 0 such that for
all u, x, v ∈ A∗ one has

uxnv ∈ L ⇔ uxn+1v ∈ L

• An automaton is counter-free if there is no word w that permutes a non-trivial
subset of Q
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Aperiodicity - Intuition
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Star-Free Regular Sets

• The set of regular subsets of A∗ is the smallest set of subsets of A∗ closed
under finite union, concatenation and Kleen star.

• The set of star-free subsets of A∗ is the smallest set of subsets of A∗ containing
the finite sets and closed under all finite boolean operations and concatenation.
◦ Extended regular expressions without the Kleene star operator

• Examples:
◦ ∅

◦ A∗ = ∅

◦ (ab)∗ = ε + (aA∗ ∩ A∗b) ∩ (A∗aaA∗ ∨ A∗bbA∗)

◦ (ab ∨ ba)∗ = (A∗a)b(ab)∗(aA∗) + (A∗b)(ab)∗a(bA∗)
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Star-free and Aperiodic Sets

• A rational set X ⊂ A∗ is star-free iff it is aperiodic

• Two proofs:
◦ Schützenberger (based on structure of monoids)

• SF → AP : easy
• AP → SF : much more difficult

◦ Use Krohn-Rhodes Decomposition
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Scḧutzenberger’s Theorem - SF→ AP

• Let i(X) be the smallest index that saturates aperiodic set X ∈ A∗

• i(a) = 2 for a ∈ A (trivial)

• i(X ∪ Y ) ≤ min(i(X), i(Y )) (trivial)

• i(X) = i(X) (trivial)

• i(XY ) ≤ i(X) + i(Y )

◦ Proof
◦ Let N = m + n + 1 st N ≥ i(X) + i(Y )

◦ Let uxmr ∈ X and sxnv ∈ Y such that x = rs. Then uxNv ∈ XY . Either
m ≥ i(X) or n ≥ i(Y ). In the first case uxm+1r ∈ X.

◦ Hence uxm+1rsxnv = uxm+n+2v = uxN+1v ∈ XY .
◦ Second case and the other direction of the proof are similar.
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Semigroups and Monoids

◦• A semigroup is a set equipped with an associative operation. A monoid is a
semigroup equipped with an identity
◦ (S, �, 1)

◦ ab ∈ S for a, b ∈ S

◦ (ab)c = a(bc) for all a, b, c ∈ S

◦ 1a = a1 = 1 for all a ∈ S
◦ Example:

• A∗ is the set of all words over an alphabet A and is called the free
monoid with the null word ε and the concatenation of words being the
monoid product.

• (N, +, 0)
• (N, ∗, 1)

◦ Note: We call zero of S an element denoted by 0 such that 0s = s0 = 0 for
all s ∈ S.
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Morphisms

• A morphism between two algebraic structures is a map that preserves the
operations and the relations of the structure (applies to semigroups and
monoids).

• Given two semigroups (S, �) and (T, ∗), a semigroup morphism ϕ : S → T is a
map from S into T st for all x, y ∈ S, ϕ(x � y) = ϕ(x) ∗ ϕ(y) (for monoid
morphisms we also need the condition ϕ(1S) = 1T ).

• T is said to be homomorphic to S and we denote it by T ≤ϕ S.

• Two mutually homomorphic semigroups are said to be isomorphic

• We are mainly interested in the homomorphisms from the infinite free monoid A∗

onto finite monoids.
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Recognizable Languages

• Recognizable languages usually defined in terms of automata

• Let A = (Q, A, E, I, F ) be a finite automaton. The language recognized by A is
the set (denoted by L∗(A)) of the labels of all paths having its origin in I and its
and in F .

• A language L is recognizabe if there exists a finite automaton A st L = L∗(A)

• Recognizible languages coincide with the class of regular languages (Kleene)

• Handling the fine structure of recognizable languages is more appropriate using
a more abstract definition, using monoids (or semigroups)

• A monoid morphism ϕ : A∗ → M recognizes a language L ⊂ A∗ if
L = ϕ−1ϕ(L)

◦ If u ∈ L and ϕ(u) = ϕ(v) implies v ∈ L

◦ There is P ⊂ M such that L = ϕ−1(P )
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Transition Monoid

• Equivalence between automata and monoids

• Let A = (Q, A, E, I, F ). To each word w ∈ A∗, there corresponds a relation on
Q, denoted by ϕ(w) and defined by (p, q) ∈ ϕ(w) if there exists a path from p to
q with label w.

• Monoid morphism: ϕ : A∗ → M(A)

◦ Monoid morphism from A∗ into the semigroup of relations on Q

◦ Let R1,R2 be two relations on Q. Then R1R2 defined by (p, q) ∈ R1R2

iff there exists r ∈ Q st (p, r) ∈ R1 and (r, q) ∈ R2.

• ϕ(A∗) is called transition monoid (or transformation monoid) of A and is denoted
by M(A).

• A word w is recognized by A iff (p, q) ∈ ϕ(w) for some initial state p and some
final state q.

• If a finite automaton recognizes a language L, then its transition monoid
recognizes L.
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Syntactic Monoid

• Let L ⊂ A∗. The syntactic congruence ∼L is defined over A∗ by u ∼L v iff for all
x, t ∈ A∗, xuy ∈ L ⇔ xvy ∈ L

• Syntactic monoid of L is the quotient monoid M = A∗/ ∼L.

• Each word in A∗ is mapped to the congruence class modulo L of which that word
is a member (many-to-one mapping).

• It is the smallest monoid recognizing L.

• Syntactic monoid recognizing L is the transition monoid of the minimal
deterministic automaton recognizing L.
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Syntactic Monoid - Example

1 2

a

a

1 2

a

b

A = {a, b}

L1 = (ab)∗, M1 = ϕ(L1) L2 = (aa)∗, M2 = ϕ(L2)

1 α β 0 αβ βα

1 1 2 / / 1 /
2 2 / 1 / / 2

1 α 0

1 1 2 /
2 2 1 /

M1 = {1, α, β, 0, αβ, βα} M2 = {1, α, β}

αβα = α, βαβ = β, α2 = β2 = 0 α2 = 1, α3 = α, β = 0

∀x, x2 = x3 ∀n, αn 6= αn+1

L1 aperiodic L2 not aperiodic

Aperiodic languages – p. 14/34



Syntactic Monoid - Monoid Graph

ϕ((ab)∗)

1 α β 0 αβ βα

1 1 α β 0 αβ βα

α α 0 αβ 0 0 α

β β βα 0 0 β 0

0 0 0 0 0 0 0

αβ αβ α 0 0 αβ 0

βα βα 0 β 0 0 βα
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1

α αβ
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Example: ϕ(a) = ϕ(aba) = ϕ(ababa) = α

α is the class of words which need a b in order to be accepted.
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Sketch of Proof AP→ SF

• Show that each subset of an aperiodic monoid can be rewritten as a bollean
compination of left, right and full ideals that it generates.

• Write the inverse morphism of the aperiodic monoid as a boolean combination of
sets of prefix and suffix patterns of the words that are part of the language
recognized by that monoid, as well as of the patterns not allowed in the middle of
the accepted words.

• Prove by induction on the cardinality of the J -classes of the aperiodic monoid
that the sets generated by the inverse morphism are star-free.
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Ideals

• Let S be a semigroup and M = S ∪ {1} a monoid.
◦ Right ideal of S is R ⊂ S such that RM = R

◦ Left ideal of S is L ⊂ S such that ML = L
◦ Ideal of S is I ⊂ S such that MIM = I

• Example: Let P be the set of pair positive integers. P is an ideal of Z.

• A principal ideal I in a monoid M if it is generated by a single element m ∈ M .

• Example: Let P = 2Z. P is a principal ideal of Z.
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Ideals - Example

01

α αβ

β βα

α

α

α

α

αβ

αβ

αβ

β

β

β

β

0

βα βα

αβ

α

βα

αβ

βα

βα

Right Ideals of the Syntactic Monoid of (ab)∗

01

α αβ

β βα

α

α

α

αβ

αβ

β

β

β

β

0

βα βα

αβ

α

βα

αβ

βα

βα

Left Ideals of the Syntactic Monoid of (ab)∗

αβ

α

Aperiodic languages – p. 18/34



Green Relations

• Let M be a monoid. We define 4 equivalence relations over M (L,R,J and H),
called Green relations:
◦ a R b ⇔ aM = bM
◦ a L b ⇔ Ma = Mb
◦ a J b ⇔ MaM = MbM
◦ a H b ⇔ a R b ∩ a L b
◦ aDb iff ∃c ∈ M st aLc and cRb

• So a R b, if there exist c, d ∈ M such that ac = b and bd = a.

• a and b are R-related if they generate the same right (principal) ideal.

J

D

RL

H

Given that M is a finite monoid and m, n ∈ M , m D n iff m J n.
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Green Relations - Example

1 α β 0 αβ βα

1 1 α β 0 αβ βα

α α 0 αβ 0 0 α

β β βα 0 0 β 0

0 0 0 0 0 0 0

αβ αβ α 0 0 αβ 0

βα βα 0 β 0 0 βα

1M = M M1 = M

0M = 0 M0 = 0

αM = {α, αβ, 0} Mα = {α, βα, 0}

βM = {β, βα, 0} Mβ = {β, αβ, 0}

αβM = αM (αβ R α) Mαβ = Mβ (αβ L β)

βαM = βM (βα R β) Mβα = Mα (βα L α)
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Green Relations - Example
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Scḧutzenberger’s Theorem - Lemma 1

• Lemma 1 Let M be an aperiodic monoid and let p, q, r ∈ M . If pqr = q, then
pq = q = qr.

◦ Simplification rule (SR)

• Proof
◦ Let pqr = q. Then pnqrn = q (let n be the index of M )
◦ pn+1qrn = pnqrn = q (M aperiodic)
◦ q = p(pnqrn) = pq

◦ Similar for q = qr

• Example:
◦ αβ α βα = α

◦ αβ α = α βα = α
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Scḧutzenberger’s Theorem - Lemma 2

• Lemma 2 Let M be an aperiodic monoid and let p, q, r ∈ M . Then
{q} = (qM ∩ Mq)\Jq , with Jq = {s ∈ M | q 6∈ MsM}.

◦ Intuition: decompose each subset of M into a boolean combination of right
ideals, left ideals and ideals.

• Proof
1. q ∈ (qM ∩ Mq)\Jq (trivial)

2. Let s ∈ (qM ∩ Mq)\Jq

3. ∃p, r st s = pq = qr (by (2))

4. s 6∈ Jq . Hence q ∈ MsM (by definition of Jq)

5. ∃u, v st q = usv (by (4))

6. Replace s by pq (by (3)). Hence q = upqr = (up)q(r).

7. q = (up)q (SR). Replace pq by s. q = us.

8. Replace s by qr. Then q = uqr. Using SR q = qr.

9. Since s = qr, we can conclude that q = s.
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Scḧutzenberger’s Theorem - Lemma 2

• Example:
◦ αM = {α, αβ, 0}, Mα = {α, βα, 0}

◦ Jα = {s ∈ M | α 6∈ MsM}

◦ αM ∩ Mα = {α, 0}

◦ MαM = {α, β, αβ, βα, 0}

◦ M0M = {0}

◦ Jα = {0}

◦ (αM ∩ Mα)\Jα = α
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Scḧutzenberger’s Theorem - Proof objective

• We want to prove that if ϕ : A∗ → M is a morphism from A∗ into an aperiodic
monoid M , the set ϕ−1(P ) is star-free for every subset P of M

ϕ−1(P ) =
[

m∈P

ϕ−1(m)

• Example: Let L1 = (ab)∗ and M1 = ϕ(L1) = {1, α, β, 0, αβ, βα}. P = {1, αβ}

(elements that lead from initial to final state). Then L1 = ϕ−1(1) + ϕ−1(αβ). We
need to show that ϕ−1(1) and ϕ−1(αβ) are star-free sets.

• We should show that ϕ−1(m) is star-free by induction on the integer
r(m) = Card(M\MmM).
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Scḧutzenberger’s Theorem - Inverse morphism

• Let
L = (UA∗ ∩ A∗V )\(A∗CA∗ ∪ A∗WA∗)

• We need to show the correctness of the formula ϕ−1(m) = L where

U =
S

(n,a)∈E ϕ−1(n)a V =
S

(a,n)∈F aϕ−1(n)

C = {a ∈ A | m 6∈ Mϕ(a)M} W =
S

(a,n,b)∈G aϕ−1(n)b
with

E = {(n, a) ∈ M × A | nϕ(a) R m butn 6∈ mM}

F = {(a, n) ∈ A × M | ϕ(a)n L m butn 6∈ Mm}

G = {(a, n, b) ∈ A × M × A | m ∈ (Mϕ(a)nM ∩ Mnϕ(b)M)\Mϕ(a)nϕ(b)M}

• We need to show that the sets U, V, C and W are star-free
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Scḧutzenberger’s Theorem -ϕ−1(m) ⊂ L

• U =
S

(n,a)∈E ϕ−1(n)a

• E = {(n, a) ∈ M × A | nϕ(a) R m butn 6∈ mM}

• Let u ∈ ϕ−1(m) and p the shortest prefix of u st ϕ(p) R m. p cannot be empty,
otherwise 1 R m, and in that case m = 1 (by SR).

• Let p = ra with r ∈ A∗ and a ∈ A. Let n = ϕ(r).

• n 6∈ mM and nϕ(a) R m, hence (n, a) ∈ E.

• By construction u ∈ ϕ−1(n)aA∗. Therefore, u ∈ UA∗.

• Symmetric argument in order to show that u ∈ A∗V .
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Scḧutzenberger’s Theorem -ϕ−1(m) ⊂ L

• C = {a ∈ A | m 6∈ Mϕ(a)M}

• Suppose that u ∈ A∗CA∗. Then, ∃a st m = ϕ(u) ∈ Mϕ(a)M which is a
contradiction with the definition of C

• W =
S

(a,n,b)∈G aϕ−1(n)b

• G = {(a, n, b) ∈ A × M × A | m ∈ (Mϕ(a)nM ∩ Mnϕ(b)M)\Mϕ(a)nϕ(b)M}

• Suppose that u ∈ A∗WA∗. Then exists (a, n, b) ∈ G st m ∈ Mϕ(a)nϕ(b)M

which is a contradiction with the definition of G

• This concludes our proof that ϕ−1(m) ⊂ L

Aperiodic languages – p. 28/34



Scḧutzenberger’s Theorem -L ⊂ ϕ−1(m)

• Let u ∈ L and s = ϕ(u).

• {m} = (mM ∩ Mm)\Jm, with Jm = {s ∈ M |m 6∈ MsM}

• Since u ∈ UA∗ ∩ A∗V (by def of L), we have s ∈ mM ∩ Mm.

• To prove that s = m and hence u ∈ ϕ−1(m), it is enough to prove that s 6∈ Jm,
ie. m ∈ MsM (by Lemma 2)

• Suppose m 6∈ MsM . Let the word f be the minimal factor of u st m 6∈ Mϕ(f)M

• f non-empty

• Case 1: f is a letter. Then this letter is in C and u ∈ A∗CA∗. Impossible.

• Case 2: Let f = agb with a, b ∈ A. Let n = ϕ(g).

• f is of minimal legth, hence m ∈ Mϕ(a)nM and m ∈ Mnϕ(b)M . In that case
we have n ∈ G and f ∈ W . Impossible.

• We can conclude that s = m.
• This concludes our proof that L ⊂ ϕ−1(m).

• ϕ−1(m) = L
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Scḧutzenberger’s Theorem - Inductive Base

• Let B = {a ∈ A | ϕ(a) = 1}

◦ B is the set of letters which are self-loops on all the states in the automaton

• Base: r(m) = 0

• Then m = 1, and we can show that ϕ−1(1) = B∗ and B∗ is a star-free set.
◦ r(m) = 0 then M = MmM . Hence, there exists u, v ∈ M st

umv = (um)1(v) = (u)1(mv) = 1. Apply simplification rule:
(u)1 = 1, 1(v) = 1, hence u = v = 1 and consequently m = 1.

◦ B∗ = A∗\
S

a∈A\B A∗aA∗
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Scḧutzenberger’s Theorem - Inductive Step

1. Let r(m) > 0

2. Assume that we have established that ϕ−1(s) is star-free for each element s with
r(s) < r(m)

3. We need to show that UA∗, A∗V, A∗CA∗ and A∗WA∗ are star-free.

4. U =
S

(n,a)∈E ϕ−1(n)aA∗

5. E = {(n, a) ∈ M × A | nϕ(a) R m butn 6∈ mM}

6. Let (n, a) ∈ E. Given that nϕ(a) R m we have MmM ⊂ MnM and hence
r(n) ≤ r(m)

7. Suppose r(n) = r(m). Then n ∈ MmM

8. ∃u, v ∈ M st n = umv (by (7))

9. Since, m ∈ nϕ(a)M (by (6)), ∃p ∈ M st m = np

10. n = unpv ((8) and substitution by (9))

11. n = npv = mv (by SL and substitution by (9))

12. n = mv is a contradiciton with n 6∈ mM

13. Hence, r(n) < r(m)

14. Symmetric argument to prove that A∗V is star-free.
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Scḧutzenberger’s theorem - Inductive Step

1. W =
S

(a,n,b)∈G A∗aϕ−1(n)bA∗

2. G = {(a, n, b) ∈ A × M × A | m ∈ (Mϕ(a)nM ∩ Mnϕ(b)M)\Mϕ(a)nϕ(b)M}

3. Let (a, n, b) ∈ G. Since m ∈ MnM , r(n) ≤ r(m).

4. Assume r(n) = r(m). Then MmM = MnM

5. n ∈ MmM (by (4))

6. Since m ∈ Mϕ(a)nM and m ∈ Mnϕ(b)M (by (3)), then also n ∈ Mϕ(a)nM

and n ∈ Mnϕ(b)M

7. ∃u, v ∈ M st n = unϕ(b)v (by (6))

8. n = nϕ(b)v (by SR and (7))

9. ∃x, y ∈ M st m = xϕ(a)ny (by (6))

10. m = xϕ(a)nϕ(b)vy (replace n in (9) using (8))

11. m ∈ Mϕ(a)nϕ(b)M Contradiction with definition of G

12. We can conclude that r(n) < r(m)
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Scḧutzenberger’s theorem - Example

• Let us calculate ϕ−1(αβ)

• UA∗: Find nϕ(a) R αβ such that n 6∈ αβM . α R αβ. α = 1α = 1ϕ(a).
1 6∈ αβM . Hence UA∗ = aA∗.

• A∗V : Find ϕ(a)n L αβ such that n 6∈ Mαβ. β L αβ. β = β1 = ϕ(b)1.
1 6∈ Mαβ. Hence A∗V = A∗b.

• A∗WA∗: Let us first find k such that k 6∈ MαβM . k = α0 = α1α = ϕ(a)1ϕ(a).
Remember that also α2 = β2 = β1β = ϕ(b)1ϕ(b). We verify that αβ ∈ MαM

and αβ ∈ MβM . Hence A∗WA∗ = A∗aaA∗ ∪ A∗bbA∗.

• ϕ−1(αβ) = (aA∗ ∩ A∗b)\(A∗aaA∗ ∪ A∗bbA∗)
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