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Thread I: Entscheidungsproblem

Entscheidungsproblem (The Decision Problem )
[Hilbert-Ackermann, 1928]: Decide if a given first-
order sentence is valid (dually, Satisfiable).

Church-Turing Theorem , 1936: The Decision
Problem is unsolvable.

Classification Project : Identify decidable
fragments of first-order logic.
• Monadic Class
• Bernays-Schönfinkel Class
• Ackermann Class
• Gödel Class (w/o =)
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Monadic Logic

Monadic Class : First-order logic with = and
monadic predicates – captures syllogisms.

• (∀x)P (x), (∀x)(P (x) → Q(x)) |= (∀x)Q(x)

[Löwenheim, 1915]: The Monadic Class is
decidable.
• Proof: Bounded-model property – if a
sentence is satisfiable, it is satisfiable in a
structure of bounded size.
• Proof technique: quantifier elimination.

Monadic Second-Order Logic : Allow second-
order quantification on monadic predicates.

[Skolem, 1919]: Monadic Second-Order Logic
is decidable – via bounded-model property and
quantifier elimination.

Question : What about <?
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Thread II: Logic and Automata

Two paradigms in logic:

• Paradigm I : Logic – declarative formalism

– Specify properties of mathematical objects,
e.g., (∀x, y, z)(mult(x, y, z) ↔ mult(y, x, z)) –
commutativity.

• Paradigm II : Machines – imperative formalism

– Specify computations, e.g., Turing machines,
finite-state machines, etc.

Surprising Phenomenon : Intimate connection
between logic and machines
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Nondeterministic Finite Automata

A = (Σ, S, S0, ρ, F )

• Alphabet: Σ

• States: S

• Initial states: S0 ⊆ S

• Nondeterministic transition function:
ρ : S × Σ → 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . . , an−1

Run : s0, s1, . . . , sn
• s0 ∈ S0

• si+1 ∈ ρ(si, ai) for i ≥ 0
Acceptance : sn ∈ F
Recognition : L(A) – words accepted by A.

Example : - •
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– ends with 1’s

Fact : NFAs define the class Reg of regular
languages.
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Logic of Finite Words

View finite word w = a0, . . . , an−1 over alphabet
Σ as a mathematical structure:
• Domain: 0, . . . , n− 1
• Binary relation: <
• Unary relations: {Pa : a ∈ Σ}

First-Order Logic (FO) :

• Unary atomic formulas: Pa(x) (a ∈ Σ)

• Binary atomic formulas: x < y

Example : (∃x)((∀y)(¬(x < y)) ∧ Pa(x)) – last letter
is a.

Monadic Second-Order Logic (MSO) :

• Monadic second-order quantifier: ∃Q

• New unary atomic formulas: Q(x)
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NFA vs. MSO

Theorem [Büchi, Elgot, Trakhtenbrot, 1957-8
(independently)]: MSO ≡ NFA
• Both MSO and NFA define the class Reg.

Proof : Effective

• From NFA to MSO (A 7→ ϕA)

– Existence of run – existential monadic quantification

– Proper transitions and acceptance - first-order
formula

• From MSO to NFA (ϕ 7→ Aϕ): closure of NFAs
under

– Union – disjunction

– Projection – existential quantification

– Complementation – negation
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NFA Complementation

Run Forest of A on w:

• Roots: elements of S0.

• Children of s at level i: elements of ρ(s, ai).

• Rejection: no leaf is accepting.

Key Observation : collapse forest into a DAG – at
most one copy of a state at a level; width of DAG is
|S|.

Subset Construction Rabin-Scott, 1959:
• Ac = (Σ, 2S, {S0}, ρ

c, F c)
• F c = {T : T ∩ F = ∅}
• ρc(T, a) =

⋃
t∈T ρ(t, a)

• L(Ac) = Σ∗ − L(A)
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Complementation Blow-Up

A = (Σ, S, S0, ρ, F ), |S| = n
Ac = (Σ, 2S, {S0}, ρ

c, F c)

Blow-Up : 2n upper bound

Can we do better?

Lower Bound : 2n

Sakoda-Sipser 1978, Birget 1993

Ln = (0 + 1)∗1(0 + 1)n−10(0 + 1)∗

• Ln is easy for NFA
• Ln is hard for NFA
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NFA Nonemptiness

Nonemptiness : L(A) 6= ∅

Nonemptiness Problem : Decide if given A is
nonempty.

Directed Graph GA = (S,E) of NFA A =
(Σ, S, S0, ρ, F ):
• Nodes: S
• Edges: E = {(s, t) : t ∈ ρ(s, a) for some a ∈
Σ}

Lemma : A is nonempty iff there is a path inGA from
S0 to F .

• Decidable in time linear in size of A, using
breadth-first search or depth-first search.
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MSO Satisfiability – Finite Words

Satisfiability : models(ψ) 6= ∅

Satisfiability Problem : Decide if given ψ is
satisfiable.

Lemma : ψ is satisfiable iff Aψ is nonnempty.

Corollary : MSO satisfiability is decidable.

• Translate ψ to Aψ.

• Check nonemptiness of Aψ.

Complexity :

• Upper Bound: Nonelementary Growth

2·
·
·
2n

(tower of height O(n))

• Lower Bound [Stockmeyer, 1974]: Satisfiability of
FO over finite words is nonelementary (no bounded-
height tower).
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Thread III: Sequential Circuits

Church, 1957: Use logic to specify sequential
circuits.

Sequential circuits : C = (I,O,R, f, g, R0)
• I: input signals
• O: output signals
• R: sequential elements
• f : 2I × 2R → 2R: transition function
• g : 2R → 2O: output function
• R0 ∈ 2R: initial assignment

Trace : element of (2I × 2R × 2O)ω

t = (I0, R0, O0), (I1, R1, O1), . . .

• Rj+1 = f(Ij, Rj)

• Oj = g(Rj)
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Specifying Traces

View infinite trace t = (I0, R0, O0), (I1, R1, O1), . . .
as a mathematical structure:

• Domain: N

• Binary relation: <

• Unary relations: I ∪R ∪O

First-Order Logic (FO) :

• Unary atomic formulas: P (x) (P ∈ I ∪R ∪O)

• Binary atomic formulas: x < y

Example : (∀x)(∃y)(x < y ∧ P (y)) – P holds i.o.

Monadic Second-Order Logic (MSO) :

• Monadic second-order quantifier: ∃Q

• New unary atomic formulas: Q(x)

Model-Checking Problem : Given circuit C and
formula ϕ; does ϕ hold in all traces of C?

Easy Observation : Model-checking problem
reducible to satisfiability problem – use FO to
encode the “logic” (i.e., f, g) of the circuit C.
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Büchi Automata

Büchi Automaton : A = (Σ, S, S0, ρ, F )
• Alphabet: Σ
• States: S
• Initial states: S0 ⊆ S
• Transition function: ρ : S × Σ → 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . .

Run : s0, s1, . . .

• s0 ∈ S0

• si+1 ∈ ρ(si, ai) for i ≥ 0

Acceptance : F visited infinitely often
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– infinitely many 1’s

Fact : Büchi automata define the class ω-Reg of ω-
regular languages.
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Logic vs. Automata II

Paradigm : Compile high-level logical specifications
into low-level finite-state language

Compilation Theorem : [Büchi,1960] Given an
MSO formula ϕ, one can construct a Büchi
automaton Aϕ such that a trace σ satisfies ϕ
if and only if σ is accepted by Aϕ.

MSO Satisfiability Algorithm :

1. ϕ is satisfiable iff L(Aϕ) 6= ∅

2. L(Σ, S, S0, ρ, F ) 6= ∅ iff there is a path from S0 to
a state f ∈ F and a cycle from f to itself.

Corollary [Church, 1960]: Model checking sequential
circuits wrt MSO specs is decidable.

Church, 1960: “Algorithm not very efficient”
(nonelementary complexity, [Stockmeyer, 1974]).
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Catching Bugs with A Lasso

Figure 1: Ashutosh’s Blog, November 23, 2005
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Büchi Complementation

Problem : subset construction fails!

t

0

0
s

0

t
0

s

0

ρ({s}, 0) = {s, t}, ρ({s, t}, 0) = {s, t}

History

• Büchi’62: doubly exponential construction.

• SVW’85: 16n
2

upper bound

• Safra’88: n2n upper bound

• Michel’88: (n/e)n lower bound

• KV’97: (6n)n upper bound

• FKV’04: (0.97n)n upper bound

• Yan’06: (0.76n)n lower bound

• Schewe’09: (0.76n)n upper bound

16



Thread IV: Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

• Religion: Methodist, Presbytarian, atheist,
agnostic

• Ethics: “Logic and The Basis of Ethics”, 1949

• Free Will, Predestination, and Foreknowledge:

– “The future is to some extent, even if it is only
a very small extent, something we can make for
ourselves”.

– “Of what will be, it has now been the case that it
will be.”

– “There is a deity who infallibly knows the entire
future.”

Mary Prior: “I remember his waking me one
night [in 1953], coming and sitting on my bed,
. . ., and saying he thought one could make a
formalised tense logic.”

• 1957: “Time and Modality”
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Linear vs. Branching Time, A

• Prior’s first lecture on tense logic, Wellington
University, 1954: linear time.

• Prior’s “Time and modality”, 1957: relationship
between linear tense logic and modal logic.

• Sep. 1958, letter from Saul Kripke: “[I]n an
indetermined system, we perhaps should not regard
time as a linear series, as you have done. Given
the present moment, there are several possibilities
for what the next moment may be like – and
for each possible next moment, there are several
possibilities for the moment after that. Thus the
situation takes the form, not of a linear sequence,
but of a ’tree”’. (Kripke was a high-school student,
not quite 18, in Omaha, Nebraska.)
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Linear vs. Branching Time, B

• Linear time : a system induces a set of traces

• Specs: describe traces

. . .

. . .

. . .

• Branching time : a system induces a trace tree

• Specs: describe trace trees
ε

A B

AB BB

ABB BBBBABAABBBA

BA

ABABAA

AA

AAA
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Linear vs. Branching Time, C

• Prior developed the idea into Ockhamist and
Peircean theories of branching time (branching-time
logic without path quantifiers)

Sample formula: CKMpMqAMKpMqMKqMp

• Burgess, 1978: “Prior would agree that the
determinist sees time as a line and the indeterminist
sees times as a system of forking paths.”
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Linear vs. Branching Time, D

Philosophical Conundrum

• Prior:

– Nature of course of time – branching

– Nature of course of events – linear

• Rescher:

– Nature of time – linear

– Nature of course of events – branching

– “We have ’branching in time’, not ’branching of
time”’.

Linear time : Hans Kamp, Dana Scott and others
continued the development of linear time during the
1960s.
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Temporal and Classical Logics

Key Theorem :

• Kamp, 1968: Linear temporal logic with past
and binary temporal connectives (“until” and
“since”) has precisely the expressive power
of FO over the integers.
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The Temporal Logic of Programs

Precursors :

• Prior: “There are practical gains to be had from
this study too, for example in the representation of
time-delay in computer circuits”

• Rescher & Urquhart, 1971: applications to
processes (“a programmed sequence of states,
deterministic or stochastic”)

“Big Bang 1” [Pnueli, 1977]:
• Future linear temporal logic (LTL) as a
logic for the specification of non-terminating
programs
• Temporal logic with “eventually” and “always”
(later, with “next” and “until”)
• Model checking via reduction to MSO and
automata

Crux : Need to specify ongoing behavior rather than
input/output relation!
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Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli, 1977)

Main feature: time is implicit

• next ϕ: ϕ holds in the next state.

• eventually ϕ: ϕ holds eventually

• always ϕ: ϕ holds from now on

• ϕ until ψ: ϕ holds until ψ holds.

• π,w |= next ϕ if w • -•
ϕ

- • -• -•. . .

• π,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .
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Examples

• always not (CS1 and CS2): mutual exclusion
(safety)

• always (Request implies eventually Grant):
liveness

• always (Request implies (Request until Grant)):
liveness
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Expressive Power

• Gabbay, Pnueli, Shelah & Stavi, 1980:
Propositional LTL has precisely the
expressive power of FO over the naturals.

• Thomas, 1979: FO over naturals has
the expressive power of star-free ω-regular
expressions

Summary : LTL=FO=star-free ω-RE < MSO=ω-RE

Meyer on LTL, 1980, in “Ten Thousand and One
Logics of Programming”:

“The corollary due to Meyer – I have
to get in my controversial remark – is
that that [GPSS’80] makes it theoretically
uninteresting.”
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Computational Complexity

Recall : Satisfiability of FO over traces is non-
elementary

Contrast with LTL :

• Wolper, 1981: LTL satisfiability is in
EXPTIME.

• Halpern&Reif, 1981, Sistla&Clarke, 1982:
LTL satisfiability is PSPACE-complete.

Basic Technique : tableau (influenced by branching-
time techniques)
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Model Checking

“Big Bang 2” [Clarke & Emerson, 1981, Queille
& Sifakis, 1982]: Model checking programs of
size m wrt CTL formulas of size n can be done
in time mn.

Linear-Time Response [Lichtenstein & Pnueli,
1985]: Model checking programs of size m wrt LTL
formulas of size n can be done in time m2O(n)

(tableau-based).

Seemingly :

• Automata: Nonelementary

• Tableaux: exponential
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Back to Automata

Exponential-Compilation Theorem :

[V. & Wolper,1983–1986]

Given an LTL formula ϕ of size n, one can construct
a Büchi automatonAϕ of size 2O(n) such that a trace
σ satisfies ϕ if and only if σ is accepted by Aϕ.

Automata-Theoretic Algorithms :
1. LTL Satisfiability:
ϕ is satisfiable iff L(Aϕ) 6= ∅ (PSPACE)
2. LTL Model Checking:
M |= ϕ iff L(M × A¬ϕ) = ∅ (m2O(n))
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Reduction to Practice

Practical Theory :

• Courcoubetis, V., Yannakakis & Wolper, 1989:
Optimized search algorithm for explicit model
checking

• Burch, Clarke, McMillan, Dill & Hwang, 1990:
Symbolic algorithm for LTL compilation

• Clarke, Grumberg & Hamaguchi, 1994: Optimized
symbolic algorithm for LTL compilation

• Gerth, Peled, V. & Wolper, 1995: Optimized
explicit algorithm for LTL compilation

Implementation :

• COSPAN [Kurshan, 1983]: deterministic automata
specs

• Spin [Holzmann, 1995]: Promela w. LTL:

• SMV [McMillan, 1995]: SMV w. LTL

Satisfactory solution to Church’s problem?
Almost, but not quite, since LTL<MSO=ω-RE.
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Enhancing Expressiveness

• Wolper, 1981: Enhance LTL with grammar
operators, retaining EXPTIME-ness (PSPACE [SC’82])

• V. & Wolper, 1983: Enhance LTL with automata,
retaining PSPACE-completeness

• Sistla, V. & Wolper, 1985: Enhance LTL with 2nd-
order quantification, losing elementariness

• V., 1989: Enhance LTL with fixpoints, retaining
PSPACE-completeness

Bottom Line : ETL (LTL w. automata) = µTL
(LTL w. fixpoints) = MSO, and has exponential-
compilation property.
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Thread V: Dynamic and
Branching-Time Logics

Dynamic Logic [Pratt, 1976]:
• The 2ϕ of modal logic can be taken to mean
“ϕ holds after an execution of a program step”.
• Dynamic modalities:
– [α]ϕ – ϕ holds after all executions of α.
– ψ → [α]ϕ corresponds to Hoare triple
{ψ}α{ϕ}.

Propositional Dynamic Logic [Fischer & Ladner,
1977]: Boolean propositions, programs – regular
expressions over atomic programs.

Satisfiability [Pratt, 1978]: EXPTIME – using
tableau-based algorithm

Extensions to nonterminating programs [Streett
1981, Harel & Sherman 1981] – awkward compared
to linear temporal logic.
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Branching-Time Logic

From dynamic logic back to temporal logic :
The dynamic-logic view is clearly branching;
what is the analog for temporal logic?

• Emerson & Clarke, 1980: correcteness properties
as fixpoints over computation trees

• Ben-Ari, Manna & Pnueli, 1981: branching-time
logic UB; saistisfiability in EXPTIME using tablueax

• Clarke & Emerson, 1981: branching-time logic
CTL; efficient model checking

• Emerson & Halpern, 1983: branching-time logic
CTL∗ – ultimate branching-time logic

Key Idea : Prior missed path quantifiers
• ∀ eventually p: on all possible futures, p
eventually happen.

33



Linear vs. Branching Temporal Logics

• Linear time : a system generates a set of
computations

• Specs: describe computations

• LTL: always(request → eventually grant)

• Branching time : a system generates a
computation tree

• Specs: describe computation trees

• CTL: ∀always (request → ∀eventually grant)
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Combining Dynamic and Temporal
Logics

Two distinct perspectives :
• Temporal logic: state based
• Dynamic logic: action based

Symbiosis :

• Harel, Kozen & Parikh, 1980: Process Logic
(branching time)

• V. & Wolper, 1983: Yet Another Process Logic
(branching time)

• Harel and Peleg, 1985: Regular Process Logic
(linear time)

• Henriksen and Thiagarajan, 1997: Dynamic LTL
(linear time)

Tech Transfer :

•
• Beer, Ben-David & Landver, IBM, 1998:

RCTL (branching time)
• Beer, Ben-David, Eisner, Fisman, Gringauze,

Rodeh, IBM, 2001: Sugar (branching time)
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Thread VI: From LTL to PSL

Model Checking at Intel

Prehistory:

• 1990: successful feasibility study using Kurshan’s
COSPAN

• 1992: a pilot project using CMU’s SMV

• 1995: an internally developed (linear time)
property-specification language

History:

• 1997: Development of 2nd-generation technology
started (engine and language)

• 1999: BDD-based model checker released

• 2000: SAT-based model checker released

• 2000: ForSpec (language) released
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Dr. Vardi Goes to Intel

1997: (w. Fix, Hadash, Kesten, & Sananes)

V.: How about LTL?
F., H., K., & S.: Not expressive enough.

V.: How about ETL? µTL?
F., H., K., & S.: Users will object.

1998 (w. Landver)

V.: How about ETL?
L.: Users will object.
L.: How about regular expressions?
V.: They are equivalent to automata!

RELTL : LTL plus dynamic modalities,
interpreted linearly – [e]ϕ

Easy : RELTL=ETL=ω-RE

ForSpec: RELTL + hardware features (clocks and
resets) [Armoni, Fix, Flaisher, Gerth, Ginsburg,
Kanza, Landver, Mador-Haim, Singerman, Tiemeyer,
V., Zbar]
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From ForSpec to PSL

Industrial Standardization :
• Process started in 2000
• Four candidates: IBM’s Sugar, Intel’s
ForSpec, Mororola’s CBV, and Verisity’s E.
• Fierce debate on linear vs. branching time

Outcome :

• Big political win for IBM (see references to
PSL/Sugar)

• Big technical win for Intel

– PSL is LTL + RE + clocks + resets

– Branching-time extension as an acknowledgement
to Sugar

– Some evolution over time in hardware features

• Major influence on the design of SVA (another
industrial standard)

Bottom Line : Huge push for model checking in
industry.
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Some Philosophical Points

• Science is a cathedral; we are the masons.

• There is no architect; outcome is unpredictable.

• Most of our contributions are smaller than we’d
like to think.

• Even small contributions can have major impact.

• Much is forgotten and has to be rediscovered.
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