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Obligation Games

We consider games where the winning condition for Player 0 (on the

play ) is

◮ a Boolean combination of reachability conditions

◮ equivalently: a condition on the set Occ

Standard form: Staiger-Wagner winning condition, using

F = {F1, . . . , Fk}

Player 0 wins play ρ iff Occ(ρ) ∈ F . We call these games obligation

games (or Staiger-Wagner games).



Example

S = {s1, s2, s3} F = {{s1, s2, s3}}

s2s1 s3

No winning strategy is positional.

There is a finite-state winning strategy.



Weak Parity Games

Method for solving Staiger-Wagner games:

1. Solve weak parity games.

2. Reduce Staiger-Wagner games to weak parity games.

A weak parity game is a pair (G, p), where

◮ G = (S, S0, E) is a game graph and

◮ p : S → {0, . . . , k} is a priority function mapping every state in S

to a number in {0, . . . , k}.

A play ρ is winning for Player 0 iff the minimum priority occurring in

ρ is even: min
s∈Occ(ρ) p(s) is even



Example

3

2 13

2 1

0



Weak Parity Games

Theorem

For a weak parity game one can compute the winning regions W0, W1

and also construct corresponding positional winning strategies.

Proof.

Let G = (S, S0, E) be a game graph, p : S → {0, . . . , k} a priority

function. Let Pi = {s ∈ S | p(s) = i}.

First steps if P0 6= ∅: We first compute A0 = Attr0(P0), clearly from

here Player 0 can win.

In the rest game, we compute A1 = Attr1(P1 \ A0) from here Player 1

can win.



General Construction

Aim: Compute A0, A1, . . . Ak

Let Gi be the game graph restricted to S \ (A0 ∪ . . . Ai−1).

AttrGi

0 (M) is the 0-attractor of M in the subgraph induced by Gi

A0 := Attr0(P0)

A1 := AttrG1

1 (A0 \ P1)

for i > 1 :

Ai :=







AttrGi

0 (Pi \ (A0 ∪ .. ∪ Ai−1)) if i is even

AttrGi

1 (Pi \ (A0 ∪ .. ∪ Ai−1)) if i is odd



Correctness

Correctness Claim:

W0 =
⋃

i even
Ai and W1 =

⋃

i odd

Ai

and the union of the corresponding attractor strategies are positional

winning strategies for the two players on their respective winning

regions.

Prove by induction on j = 0, . . . , k the following:

⋃

i=0..k,i even
Ai ⊆ W0 and

⋃

i=1..k,i odd

Ai ⊆ W0



Correctness (cont.)

Base:

◮ i=0: A0 = Attr0(P0) ⊆ W0

◮ i=1: A1 = Attr1(P1 \ A0) ⊆ W1

Induction step:

◮ i even: Consider play ρ starting Ai that complies to attractor

strategy.

◮ Case 1: ρ eventually leaves Ai to some Aj (from a Player-1 state),

which j < i and even, then Player 0 wins by induction hypothesis.

◮ Case 2: ρ visits Pi, then we need to show that ρ visits only states

with p(s) ≥ i. Consider a state s that visits Pi, then

◮ if s ∈ S0, then not all edges lead to states with lower priority,

otherwise s ∈ Aj for some j < i. Contradiction.



Correctness (cont.)

◮ Case 2 (cont.):

◮ if s ∈ S1, then all edges lead to states with priority ≥ i. Any edge

to a lower priority must lead to Aj with even j (Case 1). If there

were edges to states s′ with priority j < i and j odd, then s′

would already be in Aj . Contradiction.

◮ i odd: switch players



Obligation/Staiger-Wagner to Weak-Parity Games

◮ How to translate a Staiger-Wagner automaton to Weak-Parity

automaton?

◮ Idea: record visited states during a run

◮ Record set: R ⊆ S

◮ Question: How to give priorities?



Record Sets and Priorities

Assume automaton with states {s0, s1, s2}. Consider possible record

sets.

∅

{s0} {s1} {s2}

{s0, s1} {s1, s2}{s0, s2}

{s0, s1, s2}

Assume the following run s1, s0, s1, s0, s2, ... and the acceptance

condition F = {{s0, s1}, {s0, s1, s2}}. How to assign priorities?



Record Sets and Priorities

F = {{s0, s1}, {s0, s1, s2}}. How would you assign priorities?

∅

{s0} : 5 {s1} : 5 {s2} : 5

{s0, s1} : 2 {s1, s2} : 3{s0, s2} : 3

{s0, s1, s2} : 0

d.c.

4 or 5

2 or 3

0 or 1



From Staiger-Wagner to Weak Parity Automata

Given a deterministic Staiger-Wagner automaton A = (S, I, T, F ), we

can construct an equivalent weak parity automaton A′ = (S′, I ′, T ′, p)

as follows:

S′ := S × 2S

I ′ := (I, {I})

T ′((s,R), a) := (T (s, a), R ∪ {T (s, a)}

p((s,R)) := 2 · |S| −







2 · |R| if R ∈ F

2 · |R| − 1 if R 6∈ F



Idea of Game Reduction

We want to solve Staiger-Wagner games. We use a reduction to weak

parity games (and the positional winning strategies of weak parity

games).

Reduction will transform a game (G,φ) into a game (G′, φ′) such that

usually

◮ G′ is (usually) larger than G

◮ φ′ is simpler than φ (so the solution of (G′, φ′) is simpler than

that of (G,φ))

◮ from a solution of (G′, φ′) we can construct a solution of (G,φ).

Concrete application: Transform Staiger-Wagner game into a weak

parity game over a larger graph (from S proceed to S × 2S)



Game Reduction

Let G = (S, S0, E) and G′ = (S′, S′

0, E
′) be game graphs with winning

conditions φ and φ′, respectively.

(G,φ) is reducible to (G′, φ′) if:

1. S′ = S × M for a finite set M and S′

0 = S0 × M

2. Each play ρ = s0s1 . . . over G is translated into a play

ρ′ = s′0s
′

1 . . . over G′ by

◮ a function f : S → S × M (the beginning of ρ′).

◮ forall states (m, s) ∈ S × M in G′ and all states s′ ∈ S in G, if

there exists an edge (s, s′) ∈ E, then there is a unique m′ with

((m, s), (m′, s′)) ∈ E′

◮ forall edges ((m, s), (m′, s′)) ∈ E′ in G′, there is an edges

(s, s′) ∈ E in G

3. For all plays ρ and ρ′ according to 2.: ρ ∈ φ iff ρ′ ∈ φ′



Application of Game Reduction

Theorem

Suppose (G,φ) is reducible to (G′, φ′) with extension set M , initial

function g, and G and G′ defined as before. Then, if Player 0 wins in

(G′, φ′) from g(s) with a memoryless winning strategy, then Player 0

wins in (G,φ) from s with a finite-state strategy.

Idea: Given a memoryless winning strategy f : S′

0 → S′ from g(s) for

Player 0 in (G′, φ′), we can construct a strategy automaton

A = (M,m0, δ, λ) for Player 0 in (G,φ).



Obligation/Staiger-Wagner Games

Theorem

Given a Staiger-Wagner game (G,φ), one can compute the winning

regions of Player 0 and 1 and corresponding finite state strategies.

Proof.

We can apply game reduction with (G′, φ′) as follows:

G′ := (S′, S′

0, E
′)

S′ := 2S × S

((R, s), (R′, s′)) ∈ E′) iff (s, s′) ∈ E,R′ = R ∪ {s′}

g(s) = ({s}, s)

p((R, s)) := 2 · |S| −







2 · |R| if P ∈ φ

2 · |R| − 1 if P 6∈ φ



Exponential-Size Memory

Theorem

There is a family of Staiger-Wagner games over game graphs

G1, G2, G3, . . . which grow linearly in n such that

◮ Player 0 wins from a certain initial vertex of Gn

◮ any finite-state strategy for Player 0 needs at least 2n states

s0

1 2

...

n

s′0

1’

...

n’

Winning condition:

φ = {ρ | ∀i = 1 . . . n : i ∈ Occ(ρ) ↔ i′ ∈ Occ(ρ)}



Exponential Memory (cont.)

Claim:

Over Gn there is an automaton winning strategy for Player 0 from

vertex s0 with a memory of size 2n. (Remember the visited vertices i,

for the appropriate choice from vertex s′0 onwards.)

Each automaton winning strategy for Player 0 from s0 in Gn has a

memory of 2n many states.

Proof.

Assume |states| < 2n is sufficient.

Then two play prefixes u 6= v exist leading to the same memory states

at s′0. The rest r of the play is then the same after u and v.

One of the two player ur, vr is lost by Player 0. Contradiction.


