
Example: Model Checking and Repair

Barbara Jobstmann

Verimag/CNRS (Grenoble, France)

November 13, 2009

Homework

1. Given G = (S, S0, E) and F ⊆ Q, give an algorithm that

computes the 0-Attractor(F) in time O(|E|).

Solution:

1. Preprocessing: Compute for every state s ∈ S1 outdegree out(s)

2. Set n(s) := out(s) for each s ∈ S1

3. To breadth-first search backwards from F with the following

conventions:

◮ mark all s ∈ F

◮ mark s ∈ S0 if reached from marked state

◮ mark s ∈ S1 if n(s) = 0, other set n(s) := n(s) − 1.

The marked vertices are the ones of Attr0(F).

Homework (cont.)

2. Consider the game graph shown in below and the following

winning conditions:

(a) Occ(ρ) ∩ {1} 6= ∅ and

(b) Occ(ρ) ⊆ {1, 2, 3, 4, 5, 6} and

(c) Inf(ρ) ∩ {4, 5} 6= ∅.

Compute the winning regions

and corresponding winning

strategies showing the interme-

diate steps (i.e., the Attractor

and Recurrence sets) of the

computation.

Homework (cont.)

3. Given a game graph G = (S, S0, T) and a set F ⊆ S. Let W0 and

W1 be the winning regions of Player 0 and Player 1, respectively,

in the Buchi game (G,F). Prove or disprove:

(a) The winning set of Player 0 in the safety game for (G, W0) is W0,

(b) If f0 is a winning strategy for Player 0 in the safety game for

(G, W0), then f0 is also a winning strategy for Player 0 in the

Buchi game for (G, F),

(c) the winning set of Player 1 in the guaranty game for (G, W0) is

W1, and

(d) if f1 is a winning strategy for Player 1 in the guaranty game for

(G, W0), then f1 is also a winning strategy for Player 1 in the

Buchi game (G, F).

MC and Repair Example

Lock Example

...

1 while(...) {

2 if (...) {

3 lock();

4 gotlock++;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock--;

}

8 ...

Properties

1. P1: do not aquire a lock twice

2. P2: do not call unlock without holding the lock

Transition System of P

Variables: line, gotlockl=1,gl=0.... l=1,gl=-1

l=2,gl=0l=2,gl=-1

l=3,gl=0l=3,gl=-1

l=4,gl=0l=4,gl=-1

l=5,gl=0 l=5,gl=1l=5,gl=-1

l=6,gl=0 l=6,gl=1l=6,gl=-1

l=7,gl=0 l=7,gl=1l=7,gl=-1

l=8,gl=0l=8,gl=-1

Recall LTL

Boolean Operators: ¬, ∧, ∨, →,...

Temporal Operators:

◮ next: ©ϕ ... in the next step ϕ holds

◮ until: ϕ1 Uϕ2 ... at some point in the future ϕ2 holds and

until then ϕ1 holds

Useful abbreviations:

◮ eventually: 3ϕ = true Uϕ

◮ always: 2ϕ = ¬3¬ϕ

◮ weakuntil: ϕ1 W ϕ2 = (ϕ1 U ϕ2) ∨ 2ϕ1

Note that

¬(ϕ1 U ϕ2) = (¬ϕ2 U¬ϕ1 ∧ ¬ϕ2) ∨ 2¬ϕ2 = ¬ϕ2 W(¬ϕ1 ∧ ¬ϕ2).

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock.

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock. 2((l = 3) → ©(¬(l = 3)W(l = 6)))

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock. 2((l = 3) → ©(¬(l = 3)W(l = 6)))

2. P2: do not call unlock without holding the lock

Our properties in LTL

1. P1: do not aquire a lock twice

Whenever we have called lock, we are not allowed to call it again

before calling unlock. 2((l = 3) → ©(¬(l = 3)W(l = 6)))

2. P2: do not call unlock without holding the lock

(¬(l = 6)W(l = 3)) ∧ (l = 6 → ©(¬(l = 6)W(l = 3)))

From LTL to Automata: Expansion rules

◮ 2ϕ = ϕ ∧©2ϕ

◮ 3ϕ = ϕ ∨©3ϕ

◮ ϕ1 U ϕ2 = ϕ2 ∨ (ϕ1 ∧©ϕ1 U ϕ2)

◮ ϕ1 W ϕ2 = ϕ2 ∨ (ϕ1 ∧©ϕ1 W ϕ2)

Example: 2((l = 3) → ©(¬(l = 3)W(l = 6)))

Shortcuts: l3 for (l = 3) and l6 for (l = 6)

ϕ = 2(¬l3 ∨ (l3 ∧©(¬l3 W l6)))

Expand: (¬l3 ∨ (l3 ∧©(¬l3 W l6))) ∧©ϕ

DNF: s0 ∨ s1 with s0 = ¬l3 ∧©ϕ and s1 = l3 ∧©(¬l3 W l6 ∧ ϕ)

Example

s0 : ¬l3 ∧©ϕ

s1 : l3∧©(¬l3 W l6 ∧ ϕ)

s2 : l6 ∧©ϕ

s3 :¬l3∧©(¬l3 W l6 ∧ ϕ)

Expand: ¬l3 W l6 ∧ ϕ

(l6 ∨ (¬l3 ∧©(¬l3 W l6))) ∧ ((¬l3 ∧©ϕ) ∨ (l3 ∧©(¬l3 W l6 ∧ ϕ)))

(1) l6 ∧ ¬l3 ∧©ϕ : s2

(2) l6 ∧ l3 · · · = false

(3) (¬l3 ∧©(¬l3 W l6)) ∧ (¬l3 ∧©ϕ) : s3

(4) (¬l3 ∧ · · · ∧ l3 · · · = false

Model Checking

L(Program) ⊆ L(P1)

L(Program) ∩ L(¬P1) = ∅

Automaton for ¬ P1

¬P1 = ¬2(l3 → ©(¬l3 W l6))

¬P1 = 3(l3 ∧©(¬l6 U l3))

Simplified version:

s0

s1

s2

l3

l3

⊤

¬l6

⊤

Product of Program and Property

l=1,gl=0,s0l=1,gl=-1,s0

l=2,gl=-1,s0

l=3,gl=-1,s0

l=4,gl=-1,s1

l=2,gl=0,s0

l=3,gl=0,s0

l=4,gl=0,s1

l=5,gl=0,s0 l=5,gl=1,s1l=5,gl=0,s1

l=6,gl=1,s1

l=7,gl=0s0l=7,gl=0,s1

l=1,gl=-1,s1

l=2,gl=-1,s1

l=3,gl=-1,s1

l=4,gl=-1,s2

....

Counterexample

1. Line 1: enter while loop

2. Line 2: skip over if

3. ...

4. Line 1: enter while loop

5. Line 2: enter if (call lock)

6. ...

7. Line 1: enter while loop

8. Line 2: enter if (call lock again)

...

1 while(...) {

2 if (...) {

3 lock();

4 gotlock++;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock--;

}

8 ...

Repair

Repair: Step 1 - Free variables

1 while(...) {

2 if (...) {

3 lock();

4 gotlock=?;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock=?;

}

8 ...

Game on P

Variables: line, gotlockl=1,gl=0.... l=1,gl=-1

l=2,gl=0l=2,gl=-1

l=3,gl=0l=3,gl=-1

l=4,gl=0l=4,gl=-1

l=5,gl=0 l=5,gl=1l=5,gl=-1

l=6,gl=0 l=6,gl=1l=6,gl=-1

l=7,gl=0 l=7,gl=1l=7,gl=-1

l=8,gl=0l=8,gl=-1

Repair: Winning Condition

Note in MC: non-determinism due to input and due to automaton are

treated the same way!

In Game: non-determinism may cause troubles.

s0

s1

s2

l3

l3

⊤

¬l6

⊤

Deterministic Automata/Observer

Recall,

ϕ = 2(¬l3 ∨ (l3 ∧©(¬l3 W l6)))

s0

s1

s2

l3

¬l3

l3

¬l3 ∧ ¬l6

l6

Note: this is a safety automaton.

Add Automaton to Game on P

Variables: line, gotlockl=1,gl=0,s0
.... l=1,gl=-1

l=2,gl=0,...l=2,gl=-1

l=3,gl=0l=3,gl=-1

l=4,gl=0l=4,gl=-1

l=5,gl=0 l=5,gl=1l=5,gl=-1

l=6,gl=0 l=6,gl=1l=6,gl=-1

l=7,gl=0 l=7,gl=1l=7,gl=-1

l=8,gl=0l=8,gl=-1

A Winning Strategy

Variables: line, gotlockl=1,gl=0

l=2,gl=0

l=3,gl=0

l=4,gl=0

l=5,gl=0 l=5,gl=1

l=6,gl=0 l=6,gl=1

l=7,gl=0 l=7,gl=1

l=8,gl=0

A Correct Program

1 while(...) {

2 if (...) {

3 lock();

4 gotlock=1;

}

...

...

5 if (gotlock!=0)

6 unlock();

7 gotlock=0;

}

8 ...

