Infinite Games

Barbara Jobstmann
Verimag/CNRS (Grenoble, France)

November 6, 2009



Motivation: Build Correct HW /SW Systems

» Use logic to specify correctness properties, e.g.:
> every job sent to the printer is eventually printed
> two jobs do not overlap (only one job is printed at a time)

> a job that is canceled will be interupted
These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.



Motivation: Build Correct HW /SW Systems

» Use logic to specify correctness properties, e.g.:
> every job sent to the printer is eventually printed
> two jobs do not overlap (only one job is printed at a time)

> a job that is canceled will be interupted
These are conditions on infinite sequences (system runs), and can
be specified by automata and logical formulas.

» Given a logical specification, we can do either:
» VERIFICATION: prove that a given system satisfies the

specification
» SYNTHESIS: build a system that satisfies the specification



Intuition of Infinite Games

Two players:
1. Printer controller is Player 0
2. Users are Player 1

A play of a game is an infinite sequence of states of printer transition

system, where the two players choose moves alternatively.

Player 0 (printer controller) wins the play if all conditions are satisfied
independent of the choices Player 1 (user) makes. This corresponds to

finding a winning strategy for Player 0 in an infinite game.



Our Aim

Solution of the Synthesis Problem

1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem



Our Aim

Solution of the Synthesis Problem
1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem

Main result:
The synthesis problem is algorithmically solvable for finite-state
systems with respect to specifications given as w-automata or

linear-time temporal logic.



Other Applications of Games

» Program repair or program sketching
» Nicer and more intuitive proofs for logics over trees

» Verification for logics over trees



Outline

1. Terminology
2. Safety and Reachability games

3. Bichi and coBiichi games



Terminology




Terminology

Two-player games between Player 0 and 1

An infinite game (G, ¢) consists of
> a game graph G and

» a winning condition ¢.

G defines the “playground”, in which the two players compete.
¢ defines which plays are won by Player 0.
If a play does not satisfy ¢, then Player 1 wins on this play.



Game Graphs

A game graph is a tuple G = (S, So, T') where:
» S is a finite set of states,

> Sp C S is the set of Player-0 states (S1 =S\ Sy are the Player-1

states),

» T C S xS is a transition relation. We assume that each state has

at least one successor.




Plays

A play is an infinite sequence of states p = sgs182 -+ € S such that
for all t > 0 (s;,8i41) € T.

It starts in sg and it is built up as follows:

If s; € Sp, then Player 0 chooses an edge starting in s;, otherwise
Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From
So-states Player 0 moves the token, from Sp-states Player 1 moves the

token.




Winning Condition

The winning condition describes the plays won by Player 0.
A winning condition or winning objective ¢ is a subset of plays, i.e.,
» C S¥.
We use logical conditions (e.g., LTL formulas) or automata theoretic
acceptance conditions to describe ¢.
Example:
» OOCs for some state s € S
» All plays that stay within a safe region F' C S are in ¢.
» Given a priority function p: S — {0,1,...,d}, all plays in which
the smallest priority visited is even.
Games are named after their winning condition, e.g., Safety game,

Reachability game, LTL game, Parity game,...



Types of Games

Given a play p, we define
» Occ(p) ={se€ S| >0:s =s}
» Inf(p) ={s€S|Vi>03j >i:s; =s}

Given a set F' C S,
Reachability Game ¢ ={p € S“ | Occ(p) N F # 0}
Safety Game ¢ ={peS|Occ(p) CF}
Biichi Game p={peSY|Inf(p)NF #0}
Co-Biichi Game ¢»={pesS¥|Inf(p) C F}

D D




Types of Games

Given a priority function p: S — {0,1,...,d} or an LTL formula ¢
Weak-Parity Game ¢ = {p € §* | min (e, P(s) is even}

Parity Game p={pes¥]| min  yp ., P(s) is even }
LTL Game d={peS¥|pkE ¢}

Q> qz//p

0 1 2 3 4

We will refer to the type of a game and give F, p, or ¢ instead of
defining ¢.
We will also talk about Muller and Rabin games.



Strategies

A strategy for Player 0 from state s is a function
f:8%Sy— S

specifying for any sequence of states sg, s1,... s, with sg = s and

s € Sp a successor state s; such that (sg,s;) € T.

A play p = sgsy ... is compatible with strategy f if for all s; € Sy we
have that s;11 = f(sps1--- ;).

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively. We
denote by G 4 the (unique) play that is compatible with f and g.



Winning Strategies and Regions

Given a game (G, ¢) with G = (S, Sy, E), a strategy f for Player 0
from s is called a winning strategy if for all Player-1 strategies g from
s, if Gy 4 € ¢ holds. Analogously, a Player-1 strategy g is winning if
for all Player-0 strategies f, G4 & ¢ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.



Winning Strategies and Regions

Given a game (G, ¢) with G = (S, Sy, E), a strategy f for Player 0
from s is called a winning strategy if for all Player-1 strategies g from
s, if Gy 4 € ¢ holds. Analogously, a Player-1 strategy g is winning if
for all Player-0 strategies f, G4 & ¢ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

The winning regions of Player 0 and 1 are the sets
Wy = {s € S| Player 0 wins from s}

W1 = {s € S| Player 1 wins from s}

Note each state s belongs at most to Wy or Wi. Otherwise pick
winning strategies f and g from s for Player 0 and 1, respectively,
then G4 € ¢ and Gy 4 € ¢: Contradiction.



Questions About Games

Solve a game (G, ¢) with G = (S, Sy, T):
1. Decide for each state s € S if s € W,.
2. If yes, construct a suitable winning strategy from s.
Further interesting question:
» Optimize construction of winning strategy (e.g., time complexity)

» Optimize parameters of winning strategy (e.g., size of memory)



Example

Safety game (G, F') with F' = {sq, s1, 83, 4}, i.e., Occ(p) C F

A winning strategy for Player 0 (from state sg, s3, and s4):
» From s choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s; and s9):

» From s; choose so, from so choose s4, and from s3 choose s4



Example

Safety game (G, F') with F' = {sq, s1, 83, 4}, i.e., Occ(p) C F

A winning strategy for Player 0 (from state sg, s3, and s4):
» From s choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s; and s9):
» From s; choose so, from so choose s4, and from s3 choose s4

Wo = {s0, 53, s4}, W1 = {s1, s2}



Another Example

@‘.

LTL game (G, ¢) with ¢ = Osg A Osy (visit sg and s4)
Winning strategy for Player 0 from so:
» From sy to sg, from s3 to s4, and from s4 to s7.

Note: this strategy is not winning from s3 or s4.
Winning strategy for Player 0 from ss:
» From sy to s3, from s4 to s3, and from s3 to sy on first visit,

otherwise to sy4.



Determinacy

Recall: the winning regions are disjoint, i.e., WoNW; =0
Question: Is every state winning for some player?

A game (G, ¢) with G = (S, 59, E) is called determined if
Wy U W7 = S holds.

Remarks:
1. We will show that all automata theoretic games we consider here

are determined.

2. There are games which are not determined (e.g., Tic-Tac-Toe)



Strategy Types

In general, a strategy is a function f : ST — S.

1. Computable or recursive strategies: f is computable

2. Finite-state strategies: f is computable with a finite-state
automaton meaning that f has bounded information about the
past (history).

3. Memoryless or positional strategies: f only depends on the

current state of the game (no knowledge about history of play)



Positional Strategies

Given a game (G, ¢) with G = (S, Sy, E), a strategy f: ST — S is
called positional or memoryless if for all words w,w’ € ST with
w=5p...5, and w' = s...s,, such that s, = s/, f(w) = f(w')

holds.

A positional strategy for Player 0 is representable as
1. a function f: Sy — S

2. a set of edges containing for every Player-0 state s exactly one
edge starting in s (and for every Player-1 state s’ all edges

starting in s')



Finite-state Strategies

A strategy automaton over a game graph G = (S, Sy, F) is a
finite-state automaton A = (M, mg,d, A) with alphabet S, where

» M is a finite set of states (called memory),
» mo € M is an initial state (the initial memory content),
> §: M xS — M is a transition function (the memory update fct),

> A: M xS — S is alabeling function (called the choice function).



Finite-state Strategies

A strategy automaton over a game graph G = (S, Sy, F) is a
finite-state automaton A = (M, mg,d, A) with alphabet S, where

» M is a finite set of states (called memory),

» mo € M is an initial state (the initial memory content),

> §: M xS — M is a transition function (the memory update fct),
> A: M xS — S is alabeling function (called the choice function).

The strategy for Player 0 computed by A is the function
fA(S() e Sk) = A(é(mo, So. .. Sk—l)a Sk) with s; € Sy

and the usual extension of § to words: 6(mg,€) = mg and
d(mo, So...8k) = 0(0(myg, So---Sk—1), Sk). Any strategy f, such that
there exists an A with f4 = f, is called finite-state strategy.



Recall Example

@‘.

Objective: visit sg and sy, i.e, {sg, s4} C Occ(p)
Winning strategy for Player 0 from sg, s3 and s4:
» From sy to sg, from s4 to s3, and from s3 to sy on first visit,

otherwise to s4. s0/s3
4 50/53 / s /_

s1/— 83/80 1
W ‘@ (] s/~

53/54
S4 /83 84/83



Extended Game

s0/83
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s1/— 53/50 s1/—
82?— ‘@ @’ s2/—

$3/84
54/83 54 /53



Extended Game
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Extended Game
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Extended Game

80/83
80/83
s1/— 83/80 81/__
w1 (=] ) /-

5153 $3/84

84/83
(mo N

Note: the strategy in the extended grame graph is memoryless.



Reachability and Safety Games




Reachability and Safety Games

Theorem

Given a reachability game (G, F) with G = (S, Sy, E) and F C S,
then the winning regions Wy and W1 of Player 0 and 1, respectively,
are computable, and both players have corresponding memoryless
winning strategies.

Proof.

Define

Attrd (F) := {s € S| Player 0 can force a visit from s to F

in less than ¢ moves}






Example

Attr8 = {83, 84}




Example

Attr) = {s3,54}
Attr(l) = {s0, 53,84}




Example

Attr) = {s3,54}
Attr(l, = {s0, 53,84}
Attr% = {s0, 83, S4, 57}




Attr) = {s3,54}

Attry = {s0, 53, 54}

Attr? = {50, 53, 54, 57}

Attry = {s0, 53, 54, 56, 57}
Attrg = {s0, 53, 54, 55, 56, 57}
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Computing the Attractor

Construction of Attr(F):
Attrd(F)= F
AttritH(F) = Attrf (F)U
{s€Sy|3s€S:(s,8)€ ENS € Attr)(F)}U
{s€ 8,1 |Vs€S:(s,8)€E— s cAttr)(F)}
Then
Attrd(F) C Attry(F) C Attr3(F) C ... and since S is finite, there
exists k < |S] s.t. Attrk (F) = Attrf T (F).
The 0-Attractor is defined as:

||
Attro(F U Attr (F



0-Attractor

To show Wy = Attro(F) and Wy = S\ Attro(F), we construct winning

strategies for Player 0 and 1. Define distance from state s to F"

d(s, F) = min{i | s € Attrh(F)} if s € Attro(F),

00 otherwise.



0-Attractor

To show Wy = Attro(F) and Wy = S\ Attro(F), we construct winning

strategies for Player 0 and 1. Define distance from state s to F"

d(s, F) = min{i | s € Attrh(F)} if s € Attro(F),

00 otherwise.

Proof.

Attro(F) C Wy

(a) Vs € SoNAttrg(F)\ F 3s' € S: (s,8') € ENd(s', F) < d(s, F)
(b) Vs € S;NAttrg(F)\ F,Vs' € S: (s,8') € ENd(s',F) <d(s, F)
In Attro(F) \ F, Player 0 can decrease distance by picking edges
according to (a) and Player 1 cannot avoid decreasing the distance

because of (b). So, F is reached after a finite number of moves.



0-Attractor cont.

Proof cont.

S\ Attro(F) € Wy

(a) Vs € SyN S\ Attrg(F) Vs' € S: (s,8') € E — s & Attro(F)
(b) Vs € S1 NS\ Attrg(F), 3s’ € S: (s,8') € EN S & Attro(F)

In S\ Attro(F") Player 1 can choose edges according to (b) leading

again to S\ Attrg(F') and by (a) Player 0 cannot escape from
S\ Attrg(F). So, F' will be avoided forever.

Wo = Attro(F) and W1 =5 \ AttI‘o(F)



Safety Games

Given a safety game (G, F') with G = (S, Sy, F), i.e.,
b5 = {p € 5% | Oce(p) C FY},
consider the reachability game (G, S\ F), i.e.,

¢r = {p € 5| Occ(p) N (S\ F) # 0}.

Then, S\ ¢r ={p € S| Occ(p)N(S\ F)=0}
={p € 5¥| Occ(p) C F}.
Player 0 has a safety objective in (G, F).

Player 1 has a reachability objective in (G, F').
So, Wy in the safety game (G, F') corresponds to Wi in the
reachability game (G,S \ F).



Homework

Given a reachability game (G, F') with G = (S, Sy, F), find an
algorithm that computes the winning regions and strategies in time
O(|E|)-time.



Summary

We know how to solve reachability and safety games by positional
winning strategies.

The strategies are
» Player 0: Decrease distance to F’
» Player 1: Stay outside of Attry(F')
In LTL, OF = reachability and OF = safety.

Next, OCF = Biichi and ¢OF = Co-Biichi.



Biichi and Co-Biichi Games




Biichi Game

Given a Biichi game (G, F) over the game graph G = (S, Sy, F) with

the set F' C S of Biichi states, we aim to
» determine the winning regions of Player 0 and 1
» compute their respective winning strategies

Recall, Player 0 wins p iff she visits infinitely often states in F, i.e.,

¢ ={pe S |inf(p) N F # 0}.



Idea

Compute for ¢ > 1 the set Recuré of states s € F' from which Player 0
can force at least i revisits to F.
Then,

F D Recur}(F) D Recurd(F) D ...

We compute the winning region of Player 0 with

Recury(F) := m Recur{(F)
i<1

Again, since F' is finite, there exists k such that
Recurg(F) = Recurk(F).
Claim: Wy = Attro(Recury(F))



One-Step Attractor

We count revisits, so we need the set of states from which Player 0
can force a revisit to F, i.e., state from which she can force a visit in
> 1 steps.
We define a slightly modified attractor:
A= 0
At = AU
{s€Sy|I’eS:(s,8)e ENs' € AJUF}U
{s€8|VseS:(s,8)eE—s €cAJUF}
Attrd (F) = | 45
i>0
Attrd (F) is the set of states from which Player 0 can force a revisit
to F.



Visit versus Revisit

Attro(F)

Attrd (F)




Recurrence Set

We define
Recur)(F) := F

Recurjt(F) := F N Attrd (Recur)) (F))
Recurg(F) = ;5 Recur)(F)
We show that there exists k such that Recurg(F) := ﬂfzo Recurj(F)
by proving Recurjt! (F) C Recur)(F) for all i > 0.
Proof.
> i=0: FNAttrf (F) C F
> i — 1+ 1:
Recur™?(F) = F N Attrd (Recurj™ (F)) € F N Attr] (Recurf (F))
= Recurf (F)



Recurrence Set cont.

We show that all states in Attrg(Recurg(F')) are winning for Player 0,
i.e., Attrg(Recurg(F)) € Wy. We construct a memoryless winning

strategy for Player 0 for all states in Attro(Recurg(F)).

Proof.
We know that there exists k such that
Recurf ™ (F) = Recurf(F) = F N Attr{ (Recurf(F)). So,

» for s € Recurk(F) N SO Player 0 can choose an edges back to
Attr] (Recurf (F)

) an
» for s € Recurf(F) N S all edges lead back to Attrg (Recurf (F)).
(

For all states in Attrg(Recurg(F)) \ Recurg(F'), Player 0 can follow
the attractor strategy to reach Recurg(F).



Recurrence Set cont.

We show S\ Attrg(Recurg(F)) C Wh.

Proof.

Show: Player 1 can force < i visits to F' from s ¢ Attrg(Recur)(F))
i =0: s & Attrg(F), so Player 1 can avoid visiting F at all.

i —i+1: s & Attro(Recury ™ (F)).

> s & Attro(Recur)(F)), Player 1 plays according to ind. hypothese

> Otherwise, s € Attrg(Recurf(F)) \ Attro(Recurj™ (F)) and

Player 1 can avoid Attrg(Recur™ (F)). In particular,

s & Recurht (F) = F N Attr] (Recur)) (F)).
» If s € Recur},, then Player 1 can force to leave Attry (Recurh(F)),

otherwise s € Recurs™ (F). (So, by ind. hyp. at most 4 4 1 visits.)
» If s € Attro(Recur)(F)) \ Recurf,(F), avoid Attro(Recurf (F)).



Recurrence Set cont.

T F
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Biichi games

We have shown that Player 0 has a (memoryless) winning strategy in
Attrg(Recurg(F)), so Attrg(Recurg(F')) € Wy. And, Player 1 has a
(memoryless) winning strategy in S\ Attrg(Recurg(F')), so

S\ Attrg(Recurg(F')) € Wi. This implies the following theorem.

Theorem
Given a Biichi game ((S, So, E), F), the winning regions Wy and W1
are computable and form a partition, i.e., Wo U Wy = S. Both players

have memoryless winning strategies.



Co-Biichi Games

Given a Co-Biichi Game ((S, So, F), F), i.e.,

¢c ={p € S5¥ | Inf(p) C F'}

consider the Biichi Game ((S, Sy, E), S \ F), i.e,

o5 = {p € 5| nf(p) N S\ F # 0}.

Then, $\ 65 = {p € S* | Inf(p) N (S\ F) = 0}
={p € S [Inf(p) C F}.
Player 0 has a co-Biichi objective in (G, F).

Player 1 has a Biichi objective in (G, F').
So, Wy in the co-Biichi game (G, F') corresponds to W7 in the Biichi
game (G, S\ F).



Summary

We know how to solve Biichi and Co-Biichi games by positional
winning strategies.

In LTL,
» OF = reachability
» OF = safety
» OCF = Biichi
» OOF = Co-Biichi

Next, Muller and Parity games.



