
Infinite Games

Barbara Jobstmann

Verimag/CNRS (Grenoble, France)

November 6, 2009

Motivation: Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

Motivation: Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

◮ Given a logical specification, we can do either:

◮ VERIFICATION: prove that a given system satisfies the

specification

◮ SYNTHESIS: build a system that satisfies the specification

Intuition of Infinite Games

Two players:

1. Printer controller is Player 0

2. Users are Player 1

A play of a game is an infinite sequence of states of printer transition

system, where the two players choose moves alternatively.

Player 0 (printer controller) wins the play if all conditions are satisfied

independent of the choices Player 1 (user) makes. This corresponds to

finding a winning strategy for Player 0 in an infinite game.

Our Aim

Solution of the Synthesis Problem

1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem

Our Aim

Solution of the Synthesis Problem

1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem

Main result:

The synthesis problem is algorithmically solvable for finite-state

systems with respect to specifications given as ω-automata or

linear-time temporal logic.

Other Applications of Games

◮ Program repair or program sketching

◮ Nicer and more intuitive proofs for logics over trees

◮ Verification for logics over trees

Outline

1. Terminology

2. Safety and Reachability games

3. Büchi and coBüchi games

Terminology

Terminology

Two-player games between Player 0 and 1

An infinite game 〈G,φ〉 consists of

◮ a game graph G and

◮ a winning condition φ.

G defines the “playground”, in which the two players compete.

φ defines which plays are won by Player 0.

If a play does not satisfy φ, then Player 1 wins on this play.

Game Graphs

A game graph is a tuple G = 〈S, S0, T 〉 where:

◮ S is a finite set of states,

◮ S0 ⊆ S is the set of Player-0 states (S1 = S \ S0 are the Player-1

states),

◮ T ⊆ S ×S is a transition relation. We assume that each state has

at least one successor.

s0

s4

s1 s2

s3

Player 0

Player 1

Plays

A play is an infinite sequence of states ρ = s0s1s2 · · · ∈ Sω such that

for all i ≥ 0 〈si, si+1〉 ∈ T .

It starts in s0 and it is built up as follows:

If si ∈ S0, then Player 0 chooses an edge starting in si, otherwise

Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From

S0-states Player 0 moves the token, from S1-states Player 1 moves the

token.

s0

s4

s1 s2

s3

Winning Condition

The winning condition describes the plays won by Player 0.

A winning condition or winning objective φ is a subset of plays, i.e.,

φ ⊆ Sω.

We use logical conditions (e.g., LTL formulas) or automata theoretic

acceptance conditions to describe φ.

Example:

◮ 23s for some state s ∈ S

◮ All plays that stay within a safe region F ⊆ S are in φ.

◮ Given a priority function p : S → {0, 1, . . . , d}, all plays in which

the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game,

Reachability game, LTL game, Parity game,...

Types of Games

Given a play ρ, we define

◮ Occ(ρ) = {s ∈ S | ∃i ≥ 0 : si = s}

◮ Inf(ρ) = {s ∈ S | ∀i ≥ 0∃j > i : sj = s}

Given a set F ⊆ S,

Reachability Game φ = {ρ ∈ Sω | Occ(ρ) ∩ F 6= ∅}

Safety Game φ = {ρ ∈ Sω | Occ(ρ) ⊆ F}

Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ∩ F 6= ∅}

Co-Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ⊆ F}

Types of Games

Given a priority function p : S → {0, 1, . . . , d} or an LTL formula ϕ

Weak-Parity Game φ = {ρ ∈ Sω | min
s∈Occ(ρ) p(s) is even}

Parity Game φ = {ρ ∈ Sω | min
s∈Inf(ρ) p(s) is even}

LTL Game φ = {ρ ∈ Sω | ρ |= ϕ}

40 1 2 3

We will refer to the type of a game and give F , p, or ϕ instead of

defining φ.

We will also talk about Muller and Rabin games.

Strategies

A strategy for Player 0 from state s is a function

f : S∗S0 → S

specifying for any sequence of states s0, s1, . . . sk with s0 = s and

sk ∈ S0 a successor state sj such that (sk, sj) ∈ T .

A play ρ = s0s1 . . . is compatible with strategy f if for all si ∈ S0 we

have that si+1 = f(s0s1 . . . si).

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively. We

denote by Gf,g the (unique) play that is compatible with f and g.

Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, if Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if

for all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, if Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if

for all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

The winning regions of Player 0 and 1 are the sets

W0 = {s ∈ S | Player 0 wins from s}

W1 = {s ∈ S | Player 1 wins from s}

Note each state s belongs at most to W0 or W1. Otherwise pick

winning strategies f and g from s for Player 0 and 1, respectively,

then Gf,g ∈ φ and Gf,g 6∈ φ: Contradiction.

Questions About Games

Solve a game (G,φ) with G = (S, S0, T):

1. Decide for each state s ∈ S if s ∈ W0.

2. If yes, construct a suitable winning strategy from s.

Further interesting question:

◮ Optimize construction of winning strategy (e.g., time complexity)

◮ Optimize parameters of winning strategy (e.g., size of memory)

Example

s0

s4

s1 s2

s3

Safety game (G,F) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0, s3, and s4):
◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4, and from s3 choose s4

Example

s0

s4

s1 s2

s3

Safety game (G,F) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0, s3, and s4):
◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4, and from s3 choose s4

W0 = {s0, s3, s4}, W1 = {s1, s2}

Another Example

s0

s4s3

s1 s2

LTL game (G,ϕ) with ϕ = 3s0 ∧ 3s4 (visit s0 and s4)

Winning strategy for Player 0 from s0:

◮ From s0 to s3, from s3 to s4, and from s4 to s1.

Note: this strategy is not winning from s3 or s4.

Winning strategy for Player 0 from s3:

◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.

Determinacy

Recall: the winning regions are disjoint, i.e., W0 ∩ W1 = ∅

Question: Is every state winning for some player?

A game (G,φ) with G = (S, S0, E) is called determined if

W0 ∪ W1 = S holds.

Remarks:

1. We will show that all automata theoretic games we consider here

are determined.

2. There are games which are not determined (e.g., Tic-Tac-Toe)

Strategy Types

In general, a strategy is a function f : S+ → S.

1. Computable or recursive strategies: f is computable

2. Finite-state strategies: f is computable with a finite-state

automaton meaning that f has bounded information about the

past (history).

3. Memoryless or positional strategies: f only depends on the

current state of the game (no knowledge about history of play)

Positional Strategies

Given a game (G,φ) with G = (S, S0, E), a strategy f : S+ → S is

called positional or memoryless if for all words w,w′ ∈ S+ with

w = s0 . . . sn and w′ = s′0 . . . s′m such that sn = s′m, f(w) = f(w′)

holds.

A positional strategy for Player 0 is representable as

1. a function f : S0 → S

2. a set of edges containing for every Player-0 state s exactly one

edge starting in s (and for every Player-1 state s′ all edges

starting in s′)

Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state automaton A = (M,m0, δ, λ) with alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state automaton A = (M,m0, δ, λ) with alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

fA(s0 . . . sk) := λ(δ(m0, s0 . . . sk−1), sk) with sk ∈ S0

and the usual extension of δ to words: δ(m0, ǫ) = m0 and

δ(m0, s0...sk) = δ(δ(m0, s0...sk−1), sk). Any strategy f , such that

there exists an A with fA = f , is called finite-state strategy.

Recall Example

s0

s4s3

s1 s2

Objective: visit s0 and s4, i.e, {s0, s4} ⊆ Occ(ρ)

Winning strategy for Player 0 from s0, s3 and s4:
◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.

m0 m1

s0/s3

s1/−

s2/−

s4/s3

s0/s3

s1/−

s2/−

s3/s4

s4/s3

s3/s0

Extended Game

m0 m1

s0/s3

s1/−

s2/−

s4/s3

s0/s3

s1/−

s2/−

s3/s4

s4/s3

s3/s0

Extended Game

m0 m1

s0/s3

s1/−

s2/−

s4/s3

s0/s3

s1/−

s2/−

s3/s4

s4/s3

s3/s0

m0

s0

s4s3

s1 s2

Extended Game

m0 m1

s0/s3

s1/−

s2/−

s4/s3

s0/s3

s1/−

s2/−

s3/s4

s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2

Extended Game

m0 m1

s0/s3

s1/−

s2/−

s4/s3

s0/s3

s1/−

s2/−

s3/s4

s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2

Note: the strategy in the extended grame graph is memoryless.

Reachability and Safety Games

Reachability and Safety Games

Theorem

Given a reachability game (G,F) with G = (S, S0, E) and F ⊆ S,

then the winning regions W0 and W1 of Player 0 and 1, respectively,

are computable, and both players have corresponding memoryless

winning strategies.

Proof.

Define

Attri
0(F) := {s ∈ S | Player 0 can force a visit from s to F

in less than i moves}

Example

s0

s4

s6

s1 s2

s3

s5 s7

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr0
0 = {s3, s4}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr0
0 = {s3, s4}

Attr1
0 = {s0, s3, s4}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr0
0 = {s3, s4}

Attr1
0 = {s0, s3, s4}

Attr2
0 = {s0, s3, s4, s7}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr0
0 = {s3, s4}

Attr1
0 = {s0, s3, s4}

Attr2
0 = {s0, s3, s4, s7}

Attr3
0 = {s0, s3, s4, s6, s7}

Attr4
0 = {s0, s3, s4, s5, s6, s7}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr0
0 = {s3, s4}

Attr1
0 = {s0, s3, s4}

Attr2
0 = {s0, s3, s4, s7}

Attr3
0 = {s0, s3, s4, s6, s7}

Attr4
0 = {s0, s3, s4, s5, s6, s7}

Computing the Attractor

Construction of Attri
0(F):

Attr0
0(F) = F

Attri+1
0 (F) = Attri

0(F)∪

{s ∈ S0 | ∃s′ ∈ S : (s, s′) ∈ E ∧ s′ ∈ Attri
0(F)}∪

{s ∈ S1 | ∀s′ ∈ S : (s, s′) ∈ E → s′ ∈ Attri
0(F)}

Then

Attr0
0(F) ⊆ Attr10(F) ⊆ Attr2

0(F) ⊆ . . . and since S is finite, there

exists k ≤ |S| s.t. Attrk
0(F) = Attrk+1

0 (F).

The 0-Attractor is defined as:

Attr0(F) :=

|S|
⋃

i=0

Attri
0(F)

0-Attractor

To show W0 = Attr0(F) and W1 = S \Attr0(F), we construct winning

strategies for Player 0 and 1. Define distance from state s to F :

d(s, F) :=







min{i | s ∈ Attri
0(F)} if s ∈ Attr0(F),

∞ otherwise.

0-Attractor

To show W0 = Attr0(F) and W1 = S \Attr0(F), we construct winning

strategies for Player 0 and 1. Define distance from state s to F :

d(s, F) :=







min{i | s ∈ Attri
0(F)} if s ∈ Attr0(F),

∞ otherwise.

Proof.

Attr0(F) ⊆ W0

(a) ∀s ∈ S0 ∩ Attr0(F) \ F ∃s′ ∈ S: (s, s′) ∈ E ∧ d(s′, F) < d(s, F)

(b) ∀s ∈ S1 ∩ Attr0(F) \ F , ∀s′ ∈ S: (s, s′) ∈ E ∧ d(s′, F) < d(s, F)

In Attr0(F) \ F , Player 0 can decrease distance by picking edges

according to (a) and Player 1 cannot avoid decreasing the distance

because of (b). So, F is reached after a finite number of moves.

0-Attractor cont.

Proof cont.

S \ Attr0(F) ⊆ W1

(a) ∀s ∈ S0 ∩ S \ Attr0(F) ∀s′ ∈ S: (s, s′) ∈ E → s′ 6∈ Attr0(F)

(b) ∀s ∈ S1 ∩ S \ Attr0(F), ∃s′ ∈ S: (s, s′) ∈ E ∧ s′ 6∈ Attr0(F)

In S \ Attr0(F) Player 1 can choose edges according to (b) leading

again to S \ Attr0(F) and by (a) Player 0 cannot escape from

S \ Attr0(F). So, F will be avoided forever.

W0 = Attr0(F) and W1 = S \ Attr0(F)

Safety Games

Given a safety game (G,F) with G = (S, S0, E), i.e.,

φS = {ρ ∈ Sω | Occ(ρ) ⊆ F},

consider the reachability game (G,S \ F), i.e.,

φR = {ρ ∈ Sω | Occ(ρ) ∩ (S \ F) 6= ∅}.

Then, Sω \ φR = {ρ ∈ Sω | Occ(ρ) ∩ (S \ F) = ∅}

= {ρ ∈ Sω | Occ(ρ) ⊆ F}.

Player 0 has a safety objective in (G,F).

Player 1 has a reachability objective in (G,F).

So, W0 in the safety game (G,F) corresponds to W1 in the

reachability game (G,S \ F).

Homework

Given a reachability game (G,F) with G = (S, S0, E), find an

algorithm that computes the winning regions and strategies in time

O(|E|)-time.

Summary

We know how to solve reachability and safety games by positional

winning strategies.

The strategies are

◮ Player 0: Decrease distance to F

◮ Player 1: Stay outside of Attr0(F)

In LTL, 3F = reachability and 2F = safety.

Next, 23F = Büchi and 32F = Co-Büchi.

Büchi and Co-Büchi Games

Büchi Game

Given a Büchi game (G,F) over the game graph G = (S, S0, E) with

the set F ⊆ S of Büchi states, we aim to

◮ determine the winning regions of Player 0 and 1

◮ compute their respective winning strategies

Recall, Player 0 wins ρ iff she visits infinitely often states in F , i.e.,

φ = {ρ ∈ Sω | inf(ρ) ∩ F 6= ∅}.

Idea

Compute for i ≥ 1 the set Recuri
0 of states s ∈ F from which Player 0

can force at least i revisits to F .

Then,

F ⊇ Recur10(F) ⊇ Recur20(F) ⊇ . . .

We compute the winning region of Player 0 with

Recur0(F) :=
⋂

i≤1

Recuri
0(F)

Again, since F is finite, there exists k such that

Recur0(F) = Recurk
0(F).

Claim: W0 = Attr0(Recur0(F))

One-Step Attractor

We count revisits, so we need the set of states from which Player 0

can force a revisit to F , i.e., state from which she can force a visit in

≥ 1 steps.

We define a slightly modified attractor:

A0
0 = ∅

Ai+1
0 = Ai

0 ∪

{s ∈ S0 | ∃s′ ∈ S : (s, s′) ∈ E ∧ s′ ∈ Ai
0 ∪ F} ∪

{s ∈ S1 | ∀s′ ∈ S : (s, s′) ∈ E → s′ ∈ Ai
0 ∪ F}

Attr+
0 (F) =

⋃

i≥0

Ai
0

Attr+
0 (F) is the set of states from which Player 0 can force a revisit

to F .

Visit versus Revisit

F

Attr+
0 (F)

F

Attr0(F)

Recurrence Set

We define
Recur00(F) := F

Recuri+1
0 (F) := F ∩ Attr+

0 (Recuri
0(F))

Recur0(F) :=
⋂

i≥0 Recuri
0(F)

We show that there exists k such that Recur0(F) :=
⋂k

i≥0 Recuri
0(F)

by proving Recuri+1
0 (F) ⊆ Recuri

0(F) for all i ≥ 0.

Proof.

◮ i = 0: F ∩ Attr+
0 (F) ⊆ F

◮ i → i + 1:

Recuri+2
0 (F) = F ∩ Attr+

0 (Recuri+1
0 (F)) ⊆ F ∩ Attr+

0 (Recuri
0(F))

= Recuri+1
0 (F)

Recurrence Set cont.

We show that all states in Attr0(Recur0(F)) are winning for Player 0,

i.e., Attr0(Recur0(F)) ⊆ W0. We construct a memoryless winning

strategy for Player 0 for all states in Attr0(Recur0(F)).

Proof.

We know that there exists k such that

Recurk+1
0 (F) = Recurk

0(F) = F ∩ Attr+
0 (Recurk

0(F)). So,

◮ for s ∈ Recurk
0(F) ∩ S0 Player 0 can choose an edges back to

Attr+
0 (Recurk

0(F)) and

◮ for s ∈ Recurk
0(F) ∩ S1 all edges lead back to Attr+

0 (Recurk
0(F)).

For all states in Attr0(Recur0(F)) \ Recur0(F), Player 0 can follow

the attractor strategy to reach Recur0(F).

Recurrence Set cont.

We show S \ Attr0(Recur0(F)) ⊆ W1.

Proof.

Show: Player 1 can force ≤ i visits to F from s 6∈ Attr0(Recuri
0(F))

i = 0: s 6∈ Attr0(F), so Player 1 can avoid visiting F at all.

i → i + 1: s 6∈ Attr0(Recuri+1
0 (F)).

◮ s 6∈ Attr0(Recuri
0(F)), Player 1 plays according to ind. hypothese

◮ Otherwise, s ∈ Attr0(Recuri
0(F)) \ Attr0(Recuri+1

0 (F)) and

Player 1 can avoid Attr0(Recuri+1
0 (F)). In particular,

s 6∈ Recuri+1
0 (F) = F ∩ Attr+

0 (Recuri
0(F)).

◮ If s ∈ Recuri

0, then Player 1 can force to leave Attr+0 (Recuri

0(F)),

otherwise s ∈ Recuri+1

0 (F). (So, by ind. hyp. at most i + 1 visits.)

◮ If s ∈ Attr0(Recuri

0(F)) \ Recuri

0(F), avoid Attr0(Recuri+1

0 (F)).

Recurrence Set cont.

Büchi games

We have shown that Player 0 has a (memoryless) winning strategy in

Attr0(Recur0(F)), so Attr0(Recur0(F)) ⊆ W0. And, Player 1 has a

(memoryless) winning strategy in S \ Attr0(Recur0(F)), so

S \ Attr0(Recur0(F)) ⊆ W1. This implies the following theorem.

Theorem

Given a Büchi game ((S, S0, E), F), the winning regions W0 and W1

are computable and form a partition, i.e., W0 ∪ W1 = S. Both players

have memoryless winning strategies.

Co-Büchi Games

Given a Co-Büchi Game ((S, S0, E), F), i.e.,

φC = {ρ ∈ Sω | Inf(ρ) ⊆ F}

consider the Büchi Game ((S, S0, E), S \ F), i.e,

φB = {ρ ∈ Sω | Inf(ρ) ∩ S \ F 6= ∅}.

Then, Sω \ φB = {ρ ∈ Sω | Inf(ρ) ∩ (S \ F) = ∅}

= {ρ ∈ Sω | Inf(ρ) ⊆ F}.

Player 0 has a co-Büchi objective in (G,F).

Player 1 has a Büchi objective in (G,F).

So, W0 in the co-Büchi game (G,F) corresponds to W1 in the Büchi

game (G,S \ F).

Summary

We know how to solve Büchi and Co-Büchi games by positional

winning strategies.

In LTL,

◮ 3F = reachability

◮ 2F = safety

◮ 23F = Büchi

◮ 32F = Co-Büchi

Next, Muller and Parity games.

