Automata on Finite Words

Definition

A non-deterministic finite automaton (NFA) over Σ is a tuple $A=\langle S, I, T, F\rangle$ where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F \subseteq S$ is a set of final states.

We denote $T(s, \alpha)=\left\{s^{\prime} \in S \mid\left(s, \alpha, s^{\prime}\right) \in T\right\}$. When T is clear from the context we denote $\left(s, \alpha, s^{\prime}\right) \in T$ by $s \xrightarrow{\alpha} s^{\prime}$.

Determinism and Completeness

Definition 1 An automaton $A=\langle S, I, T, F\rangle$ is deterministic (DFA) iff $\|I\|=1$ and, for each $s \in S$ and for each $\alpha \in \Sigma,\|T(s, \alpha)\| \leq 1$.

If A is deterministic we write $T(s, \alpha)=s^{\prime}$ instead of $T(s, \alpha)=\left\{s^{\prime}\right\}$.

Definition 2 An automaton $A=\langle S, I, T, F\rangle$ is complete iff for each $s \in S$ and for each $\alpha \in \Sigma,\|T(s, \alpha)\| \geq 1$.

Runs and Acceptance Conditions

Given a finite word $w \in \Sigma^{*}, w=\alpha_{1} \alpha_{2} \ldots \alpha_{n}$, a run of A over w is a finite sequence of states $s_{1}, s_{2}, \ldots, s_{n}, s_{n+1}$ such that $s_{1} \in I$ and $s_{i} \xrightarrow{\alpha_{i}} s_{i+1}$ for all $1 \leq i \leq n$.

A run over w between s_{i} and s_{j} is denoted as $s_{i} \xrightarrow{w} s_{j}$.

The run is said to be accepting iff $s_{n+1} \in F$. If A has an accepting run over w, then we say that A accepts w.

The language of A, denoted $\mathcal{L}(A)$ is the set of all words accepted by A.

A set of words $S \subseteq \Sigma^{*}$ is rational if there exists an automaton A such that $S=\mathcal{L}(A)$.

Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each input word.

Proposition 2 If A is complete, then it has at least one run for each input word.

Determinization

Theorem 1 For every NFA A there exists a DFA A_{d} such that $\mathcal{L}(A)=\mathcal{L}\left(A_{d}\right)$.

Let $A_{d}=\left\langle 2^{S},\{I\}, T_{d},\{G \subseteq S \mid G \cap F \neq \emptyset\}\right\rangle$, where

$$
\left(S_{1}, \alpha, S_{2}\right) \in T_{d} \Longleftrightarrow S_{2}=\left\{s^{\prime} \mid \exists s \in S_{1} .\left(s, \alpha, s^{\prime}\right) \in T\right\}
$$

On the Exponential Blowup of Complementation

Theorem 2 For every $n \in \mathbb{N}, n \geq 1$, there exists an automaton A, with $\operatorname{size}(A)=n+1$ such that no deterministic automaton with less than 2^{n} states recognizes the complement of $\mathcal{L}(A)$.

Let $\Sigma=\{a, b\}$ and $L=\left\{u a v\left|u, v \in \Sigma^{*},|v|=n-1\right\}\right.$.

There exists a NFA with exactly $n+1$ states which recognizes L.

Suppose that $B=\left\langle S,\left\{s_{0}\right\}, T, F\right\rangle$, is a (complete) DFA with $\|S\|<2^{n}$ that accepts $\Sigma^{*} \backslash L$.

On the Exponential Blowup of Complementation

$\left\|\left\{w \in \Sigma^{*}| | w \mid=n\right\}\right\|=2^{n}$ and $\|S\|<2^{n}$ (by the pigeonhole principle)
$\Rightarrow \exists u a v_{1}, u b v_{2} .\left|u a v_{1}\right|=\left|u b v_{2}\right|=n$ and $s \in S . s_{0} \xrightarrow{u a v_{1}} s$ and $s_{0} \xrightarrow{u b v_{2}} s$

Let s_{1} be the (unique) state of B such that $s \xrightarrow{u} s_{1}$.

Since $\left|u a v_{1}\right|=n$, then $u a v_{1} u \in L \Rightarrow u a v_{1} u \notin \mathcal{L}(B)$, i.e. s is not accepting.

On the other hand, $u b v_{2} u \notin L \Rightarrow u b v_{2} u \in \mathcal{L}(B)$, i.e. s is accepting, contradiction.

Completion

Lemma 1 For every NFA A there exists a complete NFA A_{c} such that $\mathcal{L}(A)=\mathcal{L}\left(A_{c}\right)$.

Let $A_{c}=\left\langle S \cup\{\sigma\}, I, T_{c}, F\right\rangle$, where $\sigma \notin S$ is a new sink state. The transition relation T_{c} is defined as:

$$
\forall s \in S \forall \alpha \in \Sigma .(s, \alpha, \sigma) \in T_{c} \Longleftrightarrow \forall s^{\prime} \in S .\left(s, \alpha, s^{\prime}\right) \notin T
$$

and $\forall \alpha \in \Sigma .(\sigma, \alpha, \sigma) \in T_{c}$.

Closure Properties

Theorem 3 Let $A_{1}=\left\langle S_{1}, I_{1}, T_{1}, F_{1}\right\rangle$ and $A_{2}=\left\langle S_{2}, I_{2}, T_{2}, F_{2}\right\rangle$ be two NFA. There exists automata \bar{A}_{1}, A_{\cup} and A_{\cap} that recognize the languages $\Sigma^{*} \backslash \mathcal{L}\left(A_{1}\right), \mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$, and $\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$ respectivelly.

Let $A^{\prime}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right\rangle$ be the complete deterministic automaton such that $\mathcal{L}\left(A_{1}\right)=\mathcal{L}\left(A^{\prime}\right)$, and $\bar{A}_{1}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, S^{\prime} \backslash F^{\prime}\right\rangle$.

Let $A_{\cup}=\left\langle S_{1} \cup S_{2}, I_{1} \cup I_{2}, T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle$.

Let $A_{\cap}=\left\langle S_{1} \times S_{2}, I_{1} \times I_{2}, T_{\cap}, F_{1} \times F_{2}\right\rangle$ where:

$$
\left(\left\langle s_{1}, t_{1}\right\rangle, \alpha,\left\langle s_{2}, t_{2}\right\rangle\right) \in T_{\cap} \Longleftrightarrow\left(s_{1}, \alpha, s_{2}\right) \in T_{1} \text { and }\left(t_{1}, \alpha, t_{2}\right) \in T_{2}
$$

Projections

Let the input alphabet $\Sigma=\Sigma_{1} \times \Sigma_{2}$. Any word $w \in \Sigma^{*}$ can be uniquely identified to a pair $\left\langle w_{1}, w_{2}\right\rangle \in \Sigma_{1}^{*} \times \Sigma_{2}^{*}$ such that $\left|w_{1}\right|=\left|w_{2}\right|=|w|$.

The projection operations are
$\operatorname{pr}_{1}(L)=\left\{u \in \Sigma_{1}^{*} \mid\langle u, v\rangle \in L\right.$, for some $\left.v \in \Sigma_{2}^{*}\right\}$ and $\operatorname{pr}_{2}(L)=\left\{v \in \Sigma_{2}^{*} \mid\langle u, v\rangle \in L\right.$, for some $\left.u \in \Sigma_{1}^{*}\right\}$.

Theorem 4 If the language $L \subseteq\left(\Sigma_{1} \times \Sigma_{2}\right)^{*}$ is rational, then so are the projections $p_{i}(L)$, for $i=1,2$.

Remark

The operations of union, intersection and complement correspond to the boolean \vee, \wedge and \neg.

The projection corresponds to the first-order existential quantifier $\exists x$.

The Myhill-Nerode Theorem

Let $A=\langle S, I, T, F\rangle$ be an automaton over the alphabet Σ^{*}.

Define the relation $\sim_{A} \subseteq \Sigma^{*} \times \Sigma^{*}$ as:

$$
u \sim_{A} v \Longleftrightarrow\left[\forall s, s^{\prime} \in S . s \xrightarrow{u} s^{\prime} \Longleftrightarrow s \xrightarrow{v} s^{\prime}\right]
$$

\sim_{A} is an equivalence relation of finite index

Let $L \subseteq \Sigma^{*}$ be a language. Define the relation $\sim_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ as:

$$
u \sim_{L} v \Longleftrightarrow\left[\forall w \in \Sigma^{*} . u w \in L \Longleftrightarrow v w \in L\right]
$$

\sim_{L} is an equivalence relation

The Myhill-Nerode Theorem

Theorem 5 A language $L \subseteq \Sigma^{*}$ is rational iff \sim_{L} is of finite index.
" \Rightarrow " Suppose $L=\mathcal{L}(A)$ for some automaton A.
\sim_{A} is of finite index.
for all $u, v \in \Sigma^{*}$ we have $u \sim_{A} v \Rightarrow u \sim_{L} v$
index of $\sim_{L} \leq$ index of $\sim_{A}<\infty$

The Myhill-Nerode Theorem

$" \Leftarrow " \sim_{L}$ is an equivalence relation of finite index, and let $[u]$ denote the equivalence class of $u \in \Sigma^{*}$.
$A=\langle S, I, T, F\rangle$, where:

- $S=\left\{[u] \mid u \in \Sigma^{*}\right\}$,
- $I=[\epsilon]$,
- $[u] \xrightarrow{\alpha}[v] \Longleftrightarrow u \alpha \sim_{L} v$,
- $F=\{[u] \mid u \in L\}$.

Isomorphism and Canonical Automata

Two automata $A_{i}=\left\langle S_{i}, I_{i}, T_{i}, F_{i}\right\rangle, i=1,2$ are said to be isomorphic iff there exists a bijection $h: S_{1} \rightarrow S_{2}$ such that, for all $s, s^{\prime} \in S_{1}$ and for all $\alpha \in \Sigma$ we have :

- $s \in I_{1} \Longleftrightarrow h(s) \in I_{2}$,
- $\left(s, \alpha, s^{\prime}\right) \in T_{1} \Longleftrightarrow\left(h(s), \alpha, h\left(s^{\prime}\right)\right) \in T_{2}$,
- $s \in F_{1} \Longleftrightarrow h(s) \in F_{2}$.

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.

$\underline{\text { Pumping Lemma }}$

Lemma 2 (Pumping) Let $A=\langle S, I, T, F\rangle$ be a finite automaton with $\operatorname{size}(A)=n$, and $w \in \mathcal{L}(A)$ be a word of length $|w| \geq n$. Then there exists three words $u, v, t \in \Sigma^{*}$ such that:

1. $|v| \geq 1$,
2. $w=u v t$ and,
3. for all $k \geq 0, u v^{k} t \in \mathcal{L}(A)$.

Example

$L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is not rational:

Suppose that there exists an automaton A with $\operatorname{size}(A)=N$, such that $L=\mathcal{L}(A)$.

Consider the word $a^{N} b^{N} \in L=\mathcal{L}(A)$.

There exists words u, v, w such that $|v| \geq 1, u v w=a^{N} b^{N}$ and $u v^{k} w \in L$ for all $k \geq 1$.

- $v=a^{m}$, for some $m \in \mathbb{N}$.
- $v=a^{m} b^{p}$ for some $m, p \in \mathbb{N}$.
- $v=b^{m}$, for some $m \in \mathbb{N}$.

Decidability

Given automata A and B :

- Emptiness $\mathcal{L}(A)=\emptyset$?
- Equality $\mathcal{L}(A)=\mathcal{L}(B)$?
- Infinity $\|\mathcal{L}(A)\|<\infty$?
- Universality $\mathcal{L}(A)=\Sigma^{*}$?

Emptiness

Theorem 6 Let A be an automaton with size $(A)=n$. If $\mathcal{L}(A) \neq \emptyset$, then there exists a word of length less than n that is accepted by A.

Let u be the shortest word in $\mathcal{L}(A)$.

If $|u|<n$ we are done.

If $|u| \geq n$, there exists $u_{1}, v, u_{2} \in \Sigma^{*}$ such that $|v|>1$ and $u_{1} v u_{2}=u$.

Then $u_{1} u_{2} \in \mathcal{L}(A)$ and $\left|u_{1} u_{2}\right|<\left|u_{1} v u_{2}\right|$, contradiction.

Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems are decidable for automata on finite words.

Automata on Finite Words and WS1S

WS1S

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

Any finite word $w \in \Sigma^{*}$ induces the finite sets $p_{a}=\{p \mid w(p)=a\}$.

- $x \leq y: x$ is less than y,
- $s(x)=y: y$ is the successor of x,
- $p_{a}(x): a$ occurs at position x in w

Remember that \leq and $s($.$) can be defined one from another.$

Problem Statement

Let $\mathcal{L}(\varphi)=\left\{w \mid \mathfrak{m}_{w} \models \varphi\right\}$

A language $L \subseteq \Sigma^{*}$ is said to be WS1S-definable iff there exists a WS1S formula φ such that $L=\mathcal{L}(\varphi)$.

1. Given A build φ_{A} such that $\mathcal{L}(A)=\mathcal{L}(\varphi)$
2. Given φ build A_{φ} such that $\mathcal{L}(A)=\mathcal{L}(\varphi)$

The rational and WS1S-definable languages coincide

$\underline{\text { Coding of } \Sigma}$

Let $m \in \mathbb{N}$ be the smallest number such that $\|\Sigma\| \leq 2^{m}$.
W.l.o.g. assume that $\Sigma=\{0,1\}^{m}$, and let $X_{1} \ldots X_{p}, x_{p+1}, \ldots x_{m}$

A word $w \in \Sigma^{*}$ induces an interpretation of $X_{1} \ldots X_{p}, x_{p+1}, \ldots x_{m}$:

- $i \in I_{w}\left(X_{j}\right)$ iff the j-th element of w_{i} is 1 , and
- $I_{w}\left(x_{j}\right)=i$ iff w_{i} has 1 on the j-th position and, for all $k \neq i w_{k}$ has 0 on the j-th position.

Example

Example 1 Let $\Sigma=\{a, b, c, d\}$, encoded as $a=(00), b=(01), c=(10)$ and $d=(11)$. Then the word abbaacdd induces the valuation $X_{1}=\{5,6,7\}, X_{2}=\{1,2,6,7\}$.

From Automata to Formulae

Let $A=\langle S, I, T, F\rangle$ with $S=\left\{s_{1}, \ldots, s_{p}\right\}$, and $\Sigma=\{0,1\}^{m}$.

Build $\Phi_{A}\left(X_{1}, \ldots, X_{m}\right)$ such that $\forall w \in \Sigma^{*} . w \in \mathcal{L}(A) \Longleftrightarrow w \models \Phi_{A}$

Let $a \in\{0,1\}^{m}$. Let $\Phi_{a}\left(x, X_{1}, \ldots, X_{m}\right)$ be the conjunction of:

- $X_{i}(x)$ if the $a_{i}=1$, and
- $\neg X_{i}(x)$ otherwise.

For all $w \in \Sigma^{*}$ we have $w \models \forall x . \bigvee_{a \in \Sigma} \Phi_{a}(x, \mathbf{X})$

Notice that $\Phi_{a} \wedge \Phi_{b}$ is unsatisfiable, for $a \neq b$.

Coding of S

Let $\left\{Y_{0}, \ldots, Y_{p}\right\}$ be set variables.
Y_{i} is the set of all positions labeled by A with state s_{i} during some run

$$
\Phi_{S}\left(Y_{1}, \ldots, Y_{p}\right): \forall z \cdot \bigvee_{1 \leq i \leq p} Y_{i}(z) \wedge \bigwedge_{1 \leq i<j \leq p} \neg \exists z \cdot Y_{i}(z) \wedge Y_{j}(z)
$$

Coding of I
Every run starts from an initial state:

$$
\Phi_{I}\left(Y_{1}, \ldots, Y_{p}\right): \exists x \forall y . x \leq y \wedge \bigvee_{s_{i} \in I} Y_{i}(x)
$$

Coding of T

Consider the transition $s_{i} \xrightarrow{a} s_{j}$:

$$
\Phi_{T}\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{p}\right): \forall x . x \neq s(x) \wedge Y_{i}(x) \wedge \Phi_{a}(x, \mathbf{X}) \rightarrow \bigvee_{\left(s_{i}, a, s_{j}\right) \in T} Y_{j}(s(x))
$$

Coding of F

The last state on the run is a final state:

$$
\begin{gathered}
\Phi_{F}\left(Y_{1}, \ldots, Y_{p}\right): \exists x \forall y \cdot y \leq x \wedge \bigvee_{s_{i} \in F} Y_{i}(x) \\
\Phi_{A}=\exists Y_{1} \ldots \exists Y_{p} . \Phi_{S} \wedge \Phi_{I} \wedge \Phi_{T} \wedge \Phi_{F}
\end{gathered}
$$

From Formulae to Automata

Let $\Phi\left(X_{1}, \ldots, X_{p}, x_{p+1}, \ldots, x_{m}\right)$ be a WS1S formula.

We build an automaton A_{Φ} such that $\mathcal{L}(A)=\mathcal{L}(\Phi)$.

Let $\Phi\left(X_{1}, X_{2}, x_{3}, x_{4}\right)$ be:

1. $X_{1}\left(x_{3}\right)$
2. $x_{3} \leq x_{4}$
3. $X_{1}=X_{2}$

From Formulae to Automata

A_{Φ} is built by induction on the structure of Φ :

- for $\Phi=\phi_{1} \wedge \phi_{2}$ we have $\mathcal{L}\left(A_{\Phi}\right)=\mathcal{L}\left(A_{\phi_{1}}\right) \cap \mathcal{L}\left(A_{\phi_{2}}\right)$
- for $\Phi=\phi_{1} \vee \phi_{2}$ we have $\mathcal{L}\left(A_{\Phi}\right)=\mathcal{L}\left(A_{\phi_{1}}\right) \cup \mathcal{L}\left(A_{\phi_{2}}\right)$
- for $\Phi=\neg \phi$ we have $\mathcal{L}\left(A_{\Phi}\right)=\overline{\mathcal{L}\left(A_{\phi}\right)}$
- for $\Phi=\exists X_{i}$. ϕ, we have $\mathcal{L}\left(A_{\Phi}\right)=p r_{i}\left(\mathcal{L}\left(A_{\phi}\right)\right)$.

Consequences

Theorem 8 A language $L \subseteq \Sigma^{*}$ is definable in WS1S iff it is rational.

Corollary 1 The SAT problem for WS1S is decidable.

Lemma 3 Any WS1S formula $\phi\left(X_{1}, \ldots, X_{m}\right)$ is equivalent to an WS1S formula of the form $\exists Y_{1} \ldots \exists Y_{p} . \varphi$, where φ does not contain other set variables than $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{p}$.

