
Automata on Finite Words



Definition

A non-deterministic finite automaton (NFA) over Σ is a tuple

A = 〈S, I, T, F 〉 where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ × S is a transition relation,

• F ⊆ S is a set of final states.

We denote T (s, α) = {s′ ∈ S | (s, α, s′) ∈ T}. When T is clear from the

context we denote (s, α, s′) ∈ T by s
α
−→ s′.



Determinism and Completeness

Definition 1 An automaton A = 〈S, I, T, F 〉 is deterministic (DFA) iff

||I|| = 1 and, for each s ∈ S and for each α ∈ Σ, ||T (s, α)|| ≤ 1.

If A is deterministic we write T (s, α) = s′ instead of T (s, α) = {s′}.

Definition 2 An automaton A = 〈S, I, T, F 〉 is complete iff for each

s ∈ S and for each α ∈ Σ, ||T (s, α)|| ≥ 1.



Runs and Acceptance Conditions

Given a finite word w ∈ Σ∗, w = α1α2 . . . αn, a run of A over w is a finite

sequence of states s1, s2, . . . , sn, sn+1 such that s1 ∈ I and si
αi−→ si+1 for

all 1 ≤ i ≤ n.

A run over w between si and sj is denoted as si
w
−→ sj .

The run is said to be accepting iff sn+1 ∈ F . If A has an accepting run

over w, then we say that A accepts w.

The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S ⊆ Σ∗ is rational if there exists an automaton A such that

S = L(A).



Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.



Determinization

Theorem 1 For every NFA A there exists a DFA Ad such that

L(A) = L(Ad).

Let Ad = 〈2S , {I}, Td, {G ⊆ S | G ∩ F 6= ∅}〉, where

(S1, α, S2) ∈ Td ⇐⇒ S2 = {s′ | ∃s ∈ S1 . (s, α, s′) ∈ T}



On the Exponential Blowup of Complementation

Theorem 2 For every n ∈ N, n ≥ 1, there exists an automaton A, with

size(A) = n + 1 such that no deterministic automaton with less than 2n

states recognizes the complement of L(A).

Let Σ = {a, b} and L = {uav | u, v ∈ Σ∗, |v| = n − 1}.

There exists a NFA with exactly n + 1 states which recognizes L.

Suppose that B = 〈S, {s0}, T, F 〉, is a (complete) DFA with ||S|| < 2n that

accepts Σ∗ \ L.



On the Exponential Blowup of Complementation

||{w ∈ Σ∗ | |w| = n}|| = 2n and ||S|| < 2n (by the pigeonhole principle)

⇒ ∃uav1, ubv2 . |uav1| = |ubv2| = n and s ∈ S . s0
uav1−−−→ s and s0

ubv2−−−→ s

Let s1 be the (unique) state of B such that s
u
−→ s1.

Since |uav1| = n, then uav1u ∈ L ⇒ uav1u 6∈ L(B), i.e. s is not accepting.

On the other hand, ubv2u 6∈ L ⇒ ubv2u ∈ L(B), i.e. s is accepting,

contradiction.



Completion

Lemma 1 For every NFA A there exists a complete NFA Ac such that

L(A) = L(Ac).

Let Ac = 〈S ∪ {σ}, I, Tc, F 〉, where σ 6∈ S is a new sink state. The

transition relation Tc is defined as:

∀s ∈ S∀α ∈ Σ . (s, α, σ) ∈ Tc ⇐⇒ ∀s′ ∈ S . (s, α, s′) 6∈ T

and ∀α ∈ Σ . (σ, α, σ) ∈ Tc.



Closure Properties

Theorem 3 Let A1 = 〈S1, I1, T1, F1〉 and A2 = 〈S2, I2, T2, F2〉 be two

NFA. There exists automata Ā1, A∪ and A∩ that recognize the languages

Σ∗ \ L(A1), L(A1) ∪ L(A2), and L(A1) ∩ L(A2) respectivelly.

Let A′ = 〈S′, I ′, T ′, F ′〉 be the complete deterministic automaton such

that L(A1) = L(A′), and Ā1 = 〈S′, I ′, T ′, S′ \ F ′〉.

Let A∪ = 〈S1 ∪ S2, I1 ∪ I2, T1 ∪ T2, F1 ∪ F2〉.

Let A∩ = 〈S1 × S2, I1 × I2, T∩, F1 × F2〉 where:

(〈s1, t1〉, α, 〈s2, t2〉) ∈ T∩ ⇐⇒ (s1, α, s2) ∈ T1 and (t1, α, t2) ∈ T2



Projections

Let the input alphabet Σ = Σ1 × Σ2. Any word w ∈ Σ∗ can be uniquely

identified to a pair 〈w1, w2〉 ∈ Σ∗
1 × Σ∗

2 such that |w1| = |w2| = |w|.

The projection operations are

pr1(L) = {u ∈ Σ∗
1 | 〈u, v〉 ∈ L, for some v ∈ Σ∗

2} and

pr2(L) = {v ∈ Σ∗
2 | 〈u, v〉 ∈ L, for some u ∈ Σ∗

1}.

Theorem 4 If the language L ⊆ (Σ1 × Σ2)
∗ is rational, then so are the

projections pri(L), for i = 1, 2.



Remark

The operations of union, intersection and complement correspond to the

boolean ∨, ∧ and ¬.

The projection corresponds to the first-order existential quantifier ∃x.



The Myhill-Nerode Theorem

Let A = 〈S, I, T, F 〉 be an automaton over the alphabet Σ∗.

Define the relation ∼A ⊆ Σ∗ × Σ∗ as:

u ∼A v ⇐⇒ [∀s, s′ ∈ S . s
u
−→ s′ ⇐⇒ s

v
−→ s′]

∼A is an equivalence relation of finite index

Let L ⊆ Σ∗ be a language. Define the relation ∼L⊆ Σ∗ × Σ∗ as:

u ∼L v ⇐⇒ [∀w ∈ Σ∗ . uw ∈ L ⇐⇒ vw ∈ L]

∼L is an equivalence relation



The Myhill-Nerode Theorem

Theorem 5 A language L ⊆ Σ∗ is rational iff ∼L is of finite index.

“⇒” Suppose L = L(A) for some automaton A.

∼A is of finite index.

for all u, v ∈ Σ∗ we have u ∼A v ⇒ u ∼L v

index of ∼L ≤ index of ∼A < ∞



The Myhill-Nerode Theorem

“⇐” ∼L is an equivalence relation of finite index, and let [u] denote the

equivalence class of u ∈ Σ∗.

A = 〈S, I, T, F 〉, where:

• S = {[u] | u ∈ Σ∗},

• I = [ǫ],

• [u]
α
−→ [v] ⇐⇒ uα ∼L v,

• F = {[u] | u ∈ L}.



Isomorphism and Canonical Automata

Two automata Ai = 〈Si, Ii, Ti, Fi〉, i = 1, 2 are said to be isomorphic iff

there exists a bijection h : S1 → S2 such that, for all s, s′ ∈ S1 and for all

α ∈ Σ we have :

• s ∈ I1 ⇐⇒ h(s) ∈ I2,

• (s, α, s′) ∈ T1 ⇐⇒ (h(s), α, h(s′)) ∈ T2,

• s ∈ F1 ⇐⇒ h(s) ∈ F2.

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.



Pumping Lemma

Lemma 2 (Pumping) Let A = 〈S, I, T, F 〉 be a finite automaton with

size(A) = n, and w ∈ L(A) be a word of length |w| ≥ n. Then there exists

three words u, v, t ∈ Σ∗ such that:

1. |v| ≥ 1,

2. w = uvt and,

3. for all k ≥ 0, uvkt ∈ L(A).



Example

L = {anbn | n ∈ N} is not rational:

Suppose that there exists an automaton A with size(A) = N , such that

L = L(A).

Consider the word aNbN ∈ L = L(A).

There exists words u, v, w such that |v| ≥ 1, uvw = aNbN and uvkw ∈ L

for all k ≥ 1.

• v = am, for some m ∈ N.

• v = ambp for some m, p ∈ N.

• v = bm, for some m ∈ N.



Decidability

Given automata A and B:

• Emptiness L(A) = ∅ ?

• Equality L(A) = L(B) ?

• Infinity ||L(A)|| < ∞ ?

• Universality L(A) = Σ∗ ?



Emptiness

Theorem 6 Let A be an automaton with size(A) = n. If L(A) 6= ∅, then

there exists a word of length less than n that is accepted by A.

Let u be the shortest word in L(A).

If |u| < n we are done.

If |u| ≥ n, there exists u1, v, u2 ∈ Σ∗ such that |v| > 1 and u1vu2 = u.

Then u1u2 ∈ L(A) and |u1u2| < |u1vu2|, contradiction.



Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.



Automata on Finite Words and WS1S



WS1S

Let Σ = {a, b, . . .} be a finite alphabet.

Any finite word w ∈ Σ∗ induces the finite sets pa = {p | w(p) = a}.

• x ≤ y : x is less than y,

• s(x) = y : y is the successor of x,

• pa(x) : a occurs at position x in w

Remember that ≤ and s(.) can be defined one from another.



Problem Statement

Let L(ϕ) = {w | mw |= ϕ}

A language L ⊆ Σ∗ is said to be WS1S-definable iff there exists a WS1S

formula ϕ such that L = L(ϕ).

1. Given A build ϕA such that L(A) = L(ϕ)

2. Given ϕ build Aϕ such that L(A) = L(ϕ)

The rational and WS1S-definable languages coincide



Coding of Σ

Let m ∈ N be the smallest number such that ||Σ|| ≤ 2m.

W.l.o.g. assume that Σ = {0, 1}m, and let X1 . . . Xp, xp+1, . . . xm

A word w ∈ Σ∗ induces an interpretation of X1 . . . Xp, xp+1, . . . xm:

• i ∈ Iw(Xj) iff the j-th element of wi is 1, and

• Iw(xj) = i iff wi has 1 on the j-th position and, for all k 6= i wk has 0

on the j-th position.



Example

Example 1 Let Σ = {a, b, c, d}, encoded as a = (00), b = (01), c = (10)

and d = (11). Then the word abbaacdd induces the valuation

X1 = {5, 6, 7}, X2 = {1, 2, 6, 7}. 2



From Automata to Formulae

Let A = 〈S, I, T, F 〉 with S = {s1, . . . , sp}, and Σ = {0, 1}m.

Build ΦA(X1, . . . ,Xm) such that ∀w ∈ Σ∗ . w ∈ L(A) ⇐⇒ w |= ΦA

Let a ∈ {0, 1}m. Let Φa(x,X1, . . . ,Xm) be the conjunction of:

• Xi(x) if the ai = 1, and

• ¬Xi(x) otherwise.

For all w ∈ Σ∗ we have w |= ∀x .
∨

a∈Σ Φa(x,X)

Notice that Φa ∧ Φb is unsatisfiable, for a 6= b.



Coding of S

Let {Y0, . . . , Yp} be set variables.

Yi is the set of all positions labeled by A with state si during some run

ΦS(Y1, . . . , Yp) : ∀z .
∨

1≤i≤p

Yi(z) ∧
∧

1≤i<j≤p

¬∃z . Yi(z) ∧ Yj(z)



Coding of I

Every run starts from an initial state:

ΦI(Y1, . . . , Yp) : ∃x∀y . x ≤ y ∧
∨

si∈I

Yi(x)



Coding of T

Consider the transition si
a
−→ sj :

ΦT (X1, . . . ,Xm, Y1, . . . , Yp) : ∀x . x 6= s(x)∧Yi(x)∧Φa(x,X) →
∨

(si,a,sj)∈T

Yj(s(x))



Coding of F

The last state on the run is a final state:

ΦF (Y1, . . . , Yp) : ∃x∀y . y ≤ x ∧
∨

si∈F

Yi(x)

ΦA = ∃Y1 . . . ∃Yp . ΦS ∧ ΦI ∧ ΦT ∧ ΦF



From Formulae to Automata

Let Φ(X1, . . . ,Xp, xp+1, . . . , xm) be a WS1S formula.

We build an automaton AΦ such that L(A) = L(Φ).

Let Φ(X1,X2, x3, x4) be:

1. X1(x3)

2. x3 ≤ x4

3. X1 = X2



From Formulae to Automata

AΦ is built by induction on the structure of Φ:

• for Φ = φ1 ∧ φ2 we have L(AΦ) = L(Aφ1
) ∩ L(Aφ2

)

• for Φ = φ1 ∨ φ2 we have L(AΦ) = L(Aφ1
) ∪ L(Aφ2

)

• for Φ = ¬φ we have L(AΦ) = L(Aφ)

• for Φ = ∃Xi . φ, we have L(AΦ) = pri(L(Aφ)).



Consequences

Theorem 8 A language L ⊆ Σ∗ is definable in WS1S iff it is rational.

Corollary 1 The SAT problem for WS1S is decidable.

Lemma 3 Any WS1S formula φ(X1, . . . ,Xm) is equivalent to an WS1S

formula of the form ∃Y1 . . . ∃Yp . ϕ, where ϕ does not contain other set

variables than X1, . . . ,Xm, Y1, . . . , Yp.


