Automata on Finite Words



Definition

A non-deterministic finite automaton (NFA) over ¥ is a tuple
A= (S, 1,T, F) where:

e S is a finite set of states,
o | C S is a set of initial states,

o I'C S x> x 8 isa transition relation,

o ['C Sis asetof final states.

We denote T'(s,a) ={s' € S| (s,a,8") € T}. When T is clear from the

context we denote (s,,s') € T by s — 5.



Determinism and Completeness

Definition 1 An automaton A = (S,1,T,F) is deterministic (DFA) iff
II| =1 and, for each s € S and for each o € 3, |T(s, )| < 1.

If A is deterministic we write T'(s, ) = s’ instead of T'(s, ) = {s'}.

Definition 2 An automaton A = (S,I,T,F) is complete iff for each
s €S and for each a € X, |T'(s, )| > 1.



Runs and Acceptance Conditions

Given a finite word w € X*, w = ajy ... oy, a Tun of A over w is a finite
%

sequence of states si,S2,...,8n,Sp+1 such that s; € I and s; — s;41 for

all 1 <17 <n.

. w
A run over w between s; and s; is denoted as s; — s;.

The run is said to be accepting iff s,11 € F. If A has an accepting run

over w, then we say that A accepts w.
The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S C X* is rational if there exists an automaton A such that

S = L(A).



Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.



Determinization

Theorem 1 For every NFA A there exists a DFA Ag such that
L(A)=L(Ag).

Let Ay = (2°,{I},Ty,{G C S| GNF # (}), where

(S1,a,8) €Ty <= Sy ={s'|IseS. (s,,5) €T}



On the Exponential Blowup of Complementation

Theorem 2 For everyn € N, n > 1, there exists an automaton A, with
size(A) = n + 1 such that no deterministic automaton with less than 2"

states recognizes the complement of L(A).

Let ¥ = {a,b} and L = {uav | u,v € ¥*,|v| =n — 1},

There exists a NFA with exactly n + 1 states which recognizes L.

Suppose that B = (S5,{so}, T, F'), is a (complete) DFA with |S| < 2" that
accepts 2* \ L.



On the Exponential Blowup of Complementation

{w € ¥* | Jw| =n}| =2" and | S| < 2" (by the pigeonhole principle)

uavi ubvg
= Juavy, ubvy . |uavi| = |ubvy| =n and s € .S . sg —— s and s) —— s

Let s1 be the (unique) state of B such that s — s.
Since |uavi| = n, then uaviu € L = uaviu ¢ L(B), i.e. s is not accepting.

On the other hand, ubvou ¢ L = ubvou € L(B), i.e. s is accepting,

contradiction.



Completion

Lemma 1 For every NFA A there exists a complete NFA A. such that
L(A) = L(A.).

Let A =(SU{c},I,T., F), where 0 ¢ S is a new sink state. The

transition relation 7 is defined as:
Vse SVaeX . (s,a,0) €T, — Vs'eS.(s,a,8)&T

and Va € X . (0,a,0) € T,.



Closure Properties

Theorem 3 Let Ay = (S1, 11,11, F1) and Ay = (Ss, I5,Ts, ) be two
NFA. There exists automata Ay, A, and An that recognize the languages
XN\ L(AL), L(A1) U L(A2), and L(A1) N L(A2) respectivelly.

Let A" = (S",I',T', F') be the complete deterministic automaton such
that L(A1) = L(A"), and A = <S/, I',1',5 \ F/>.

Let A, = <S1 U Sy, [1 Uy, Ty UTh, Fy U F2>.

Let An = <S1 X So, 11 x Iy, TH, F1 X F2> where:

((s1,t1),, (s2,t2)) € THh <= (s1,a,s9) € T1 and (t1,a,t2) € Th



Projections

Let the input alphabet > = X1 X Yo. Any word w € X* can be uniquely
identified to a pair (w;,wy) € X7 x X5 such that |wi| = |wa| = |w|.

The projection operations are
pri(L) ={u € X7 | (u,v) € L, for some v € 35} and
pra(L) ={v € X5 | (u,v) € L, for some u € X7 }.

Theorem 4 If the language L C (351 X Xo)* s rational, then so are the
projections pri(L), fori=1,2.



Remark

The operations of union, intersection and complement correspond to the

boolean V, A and —.

The projection corresponds to the first-order existential quantifier Jx.



The Myhill-Nerode Theorem

Let A= (S,1,T,F) be an automaton over the alphabet >*.

Define the relation ~4 C X* x X* as:

Urgv = [Vs,8 €5 .5 55 <= 555

~ 4 is an equivalence relation of finite index

Let L C X* be a language. Define the relation ~;C »* x X* as:

ur~pv <= NweX  uwéelL < vweE L]

~, 18 an equivalence relation



The Myhill-Nerode Theorem

Theorem 5 A language L C X% is rational iff ~1, 1s of finite index.

“=" Suppose L = L(A) for some automaton A.
~ 4 1s of finite index.
for all u,v € X* we have u ~4 v = u ~p v

index of ~; < index of ~4 < 0



The Myhill-Nerode Theorem

“<” ~p is an equivalence relation of finite index, and let |u] denote the

equivalence class of u € X",

A= (S 1,T,F), where:
o S={[ul |ue¥r}
. 1=[d,
o [u] & [v] <= ua ~p v,

o F={[u|uclLl)



Isomorphism and Canonical Automata

Two automata A; = (S;, I;, T;, F;), i = 1,2 are said to be isomorphic iff
there exists a bijection h : S; — S3 such that, for all s, s’ € S7 and for all

a € 2 we have :
e scl; < h(s) € Iy,
e (s,a,8)eTy < (h(s),a,h(s")) € T,

e sc Il < h(s) € Fs.

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.



Pumping Lemma

Lemma 2 (Pumping) Let A= (S,I,T,F) be a finite automaton with
size(A) =n, and w € L(A) be a word of length |w| > n. Then there exists
three words u,v,t € X* such that:

1. |v| > 1,
2. w = uvt and,

3. for all k > 0, wvft € L(A).



Example

L ={a™b"™ | n € N} is not rational:

Suppose that there exists an automaton A with size(A) = N, such that
L=L(A).

Consider the word a™Vb" € L = L(A).

There exists words u, v, w such that |v] > 1, vow = a¥b" and w*w € L
for all £ > 1.

e v=a" for some m € N.
e v =a"b’ for some m,p € N.

e v=2>" for some m € N,



Decidability

Given automata A and B:
e Emptiness L(A) =07
e Equality £L(A) =L(B) ?
e Infinity |L(A)| < o 7

e Universality £L(A) = X* 7



Emptiness

Theorem 6 Let A be an automaton with size(A) =n. If L(A) £ 0, then
there exists a word of length less than n that is accepted by A.

Let u be the shortest word in L(A).

If |u| < n we are done.

If |u| > n, there exists ui,v,us € ¥* such that |v| > 1 and uijvus = u.

Then uius € L(A) and |ujus| < |ujvus|, contradiction.



Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.



Automata on Finite Words and WS1S



WSI1S

Let ¥ = {a,b,...} be a finite alphabet.

Any finite word w € ¥* induces the finite sets p, = {p | w(p) = a}.
e v <y : xisless than v,
e s(x) =1y : y is the successor of z,

e p.(x) : a occurs at position x in w

Remember that < and s(.) can be defined one from another.



Problem Statement

Let L(p) ={w | my F ¢}

A language L C X* is said to be WS1S-definable iff there exists a WS1S
formula ¢ such that L = L(¢p).

1. Given A build ¢4 such that £(A) = L(p)
2. Given ¢ build A, such that L(A) = L(y)

The rational and WS1S-definable languages coincide



Coding of X

Let m € N be the smallest number such that 2| < 2™.
W.l.o.g. assume that ¥ = {0,1}™, and let X1 ... X, Zpt1,...2m

A word w € ¥* induces an interpretation of Xy ... X, Tpi1,... Tm:
o | c [,(X;) iff the j-th element of w; is 1, and

o [,(x;) =1 iff w; has 1 on the j-th position and, for all k£ # ¢ wy has 0
on the j-th position.



Example

Example 1 Let ¥ = {a,b,c,d}, encoded as a = (00), b = (01), ¢ = (10)
and d = (11). Then the word abbaacdd induces the valuation
X, = {5,6,7}, Xo = {1,2,6,7}. O



From Automata to Formulae

Let A= (S,I,T,F) with S = {s1,...,5p}, and ¥ = {0,1}™.

Build ® 4(X1,...,X,,) such that Vw € ¥* . w € L(A) < w = Py

Let a € {0,1}™. Let ®,(x, X1,..., X)) be the conjunction of:
e X;(x) if the a; =1, and

e —X;(x) otherwise.

For all w € ¥* we have w = Vz . \/ o5 Pu(z, X)

Notice that &, A ®p, is unsatisfiable, for a # b.



Coding of S

Let {Yo,...,Y,} be set variables.

Y, is the set of all positions labeled by A with state s; during some run

Ps(Y1,...,Y,) @ Vz. \/ Yi(z) A /\ -3z . Yi(2) NY;(2)
1<i<p 1<i<j<p



Coding of [

Every run starts from an initial state:

Qr(Y1,...,Y,) « JaVy .z <yA \/ Yi(x)
s; €1



Coding of T

. o e a
Consider the transition s; — s;:

Or(X1,. ., X, Y1,...,Y,) Voo # s(@)AY (@) AR (2, X) = \/  Yj(s())
(si,a,s4)€T



Coding of F

The last state on the run is a final state:

Or(Y1,...,Y,) : JaVy .y <z A \/ Yi(z)
s, €F

@A:HYl...HYp.CDS/\CI)[/\CI)T/\CDF



From Formulae to Automata

Let ®(X1,..., Xy, Zpt1,...,Tm) be a WS1S formula.

We build an automaton Ag such that L(A) = L(P).

Let <I>(X1,X2,ac3,ac4) be:
1. Xl(xg)
2. I3 S L4

3. X1 = Xo



From Formulae to Automata

Ag is built by induction on the structure of &:
o for ® = ¢ A P we have L(Ag) = L(Ay,) N L(Ag,)
o for & = ¢1 V qbg we have E(ACI)) — L(AQH) U L(A@)

o for ® = —¢ we have L(As) = L(Ayp)
o for & =3X; . ¢, we have L(Ag) = pri(L(Ay)).



Consequences

Theorem 8 A language L C X* is definable in WS1S iff it is rational.

Corollary 1 The SAT problem for WS1S is decidable.

Lemma 3 Any WS1S formula ¢(X1,..., X)) is equivalent to an WS1S
Jormula of the form 3Y7...3Y, . ¢, where ¢ does not contain other set
variables than Xq,..., Xy, Y1,...,Y).



