
One-dimensional Integer Sets



p-ary Expansions

Given n ∈ N, its p-ary expansion is the word w ∈ {0, 1, . . . , p − 1}∗ such

that:

n = w(0)p0 + w(1)p1 + . . . + w(k)pk

w is denoted also as (n)p. Note that the most significant digit is w(k).

Conversely, to any word w ∈ {0, 1, . . . , p − 1}∗ corresponds its value

[w]p = w(0)p0 + w(1)p1 + . . . + w(k)pk.

Notice that [w]p = [w0]p = [w00]p = . . ., i.e. the trailing zeros don’t

change the value of a word.



One-dimensional Sets

We consider one-dimensional sets S ⊆ N coded in base p.

Example 1 Powers of 2 coded in base 2:

n (n)2

1 100000 . . .

2 010000 . . .

4 001000 . . .

8 000100 . . .

16 000010 . . .

. . . . . .



One-dimensional p-Automata

A p-automaton is a finite automaton over the alphabet {0, 1, . . . , p − 1}.

A set S ⊆ N is said to be p-recognizable iff there exists a p-automaton

A = (S, q0, T, F ) such that L(A) = {w | [w]p ∈ S}.

We assume that any p-automaton has a loop q
0
−→ q for all q ∈ F .

Example 2 The 2-automaton recognizing the powers of 2 is

A = ({q0, q1}, q0,−→, {q1}) where:

• q0
0
−→ q0

• q0
1
−→ q1

• q1
0
−→ q1



p-Definability

Consider the theory 〈N,+, Vp〉, where p ∈ N, and Vp : N → N is:

• Vp(0) = 1,

• Vp(x) is the greatest power of p dividing x.

〈N,+, Vp〉 is strictly more expressive than Presburger Arithmetic (why?)

Pp(x) is true iff x is a power of p, i.e. Pp(x) : Vp(x) = x.

x ∈p y is true iff x is a power of p and x occurs in the p-expansion of y

with coefficient 0 ≤ j < p:

x ∈j,p y : Pp(x) ∧ [∃z∃t . y = z + j ·x+ t ∧ z < x ∧ (t = 0 ∨ x < Vp(t))]



p-Definability

A set S ⊆ N is p-definable iff there exists a first-order formula ϕS(x) of

〈N,+, Vp〉 such that:

x ∈ S ⇐⇒ ϕS(x) holds

Example 3 The set S of powers of 2 is 2-definable:

ϕS(x) : V2(x) = x



Multi-dimensional Integer Sets



p-Recognizability and p-Definability

Let (u, v) ∈
(
{0, 1, . . . , p − 1}2

)∗
be a word, where u, v ∈ {0, 1, . . . , p − 1}∗

such that |u| = |v|.

We can pad u and v to the right with 0’s to become equal in length.

p-recognizability: a p-automaton is defined now over
(
{0, 1, . . . , p − 1}2

)∗
.

p-definability: we consider formulae ϕS(x1, x2) of 〈N,+, Vp〉.

The definitions of p-recognizability and p-definability are easily adapted to

the m-dimensional case, for any m > 0.



p-Recognizability and p-Definability

Consider T ⊆ N
2 defined as:

(n,m) ∈ T ⇐⇒ ∀k ≥ 0 . ¬(n)2(k) ∨ ¬(m)2(k)

(5)2 = 1 0 0

(4)2 = 1 1 0

↑ m

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
n
−→



p-Recognizability and p-Definability

Consider T ⊆ N
2 defined as:

(n,m) ∈ T ⇐⇒ ∀k ≥ 0 . ¬(n)2(k) ∨ ¬(m)2(k)

(n)2 = (4)2 = 1 1 0

(m)2 = (5)2 = 1 0 0

↑ m

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
n
−→



p-Recognizability and p-Definability

Consider T ⊆ N
2 defined as:

(n,m) ∈ T ⇐⇒ ∀k ≥ 0 . ¬(n)2(k) ∨ ¬(m)2(k)

(n)2 = (3)2 = 0 1 1

(m)2 = (4)2 = 1 0 0

↑ m

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
n
−→



p-Recognizability and p-Definability

The set T is 2-recognizable.

The set T is 2-definable:

ϕ(x1, x2) : ∀z . ¬(z ∈2 x1) ∨ ¬(z ∈2 x2)

where

x ∈2 y : P2(x) ∧ [∃z∃t . y = z + x + t ∧ z < x ∧ (t = 0 ∨ x < V2(t))]



p-Recognizability and p-Definability

Theorem 1 Let M ⊆ N
m, m ≥ 1 and p ≥ 2. Then M is p-recognizable if

and only if M is p-definable.

For any p-automaton A there exists a 〈N,+, Vp〉-formula ϕA which defines

L(A).

For any 〈N,+, Vp〉-formula ϕ there exists a p-automaton Aϕ such that

L(A) is the subset of N
m defined by ϕ.



From Automata to Formulae

Let A = 〈S, q0, T, F 〉 be a p-automaton.

Suppose S = {q0, q1, . . . , qℓ−1} and replace w.l.o.g. qk by

ek = 〈0, . . . , 0
︸ ︷︷ ︸

k

, 1, 0, . . . , 0
︸ ︷︷ ︸

ℓ−k−1

〉 ∈ {0, 1}ℓ

We build a formula that defines all successful runs of A

A run is a tuple 〈n1, . . . , nm, y1, . . . , yℓ〉 where:

• 〈(n1)p, . . . , (nm)p〉 is the word read by A

• 〈y1, . . . , yℓ〉 is the sequence of states during the run



From Automata to Formulae

x ∈j,p y iff x is a power of p and the coefficient of x in (y)p is j:

x ∈j,p y : Pp(x) ∧ [∃z∃t . y = z + j · x + t ∧ z < x ∧ (x < Vp(t) ∨ t = 0)]

λp(x) denotes the greatest power of p occurring in (x)p (λp(0) = 1):

• λp(x) = pk, where k = the minimal length of the p-expansion of x

λp(x) = y : (x = 0 ∧ y = 1) ∨ [Pp(y) ∧ y ≤ x ∧ ∀z . (Pp(z) ∧ y < z) → (x < z)]



From Automata to Formulae

〈(n1)p, . . . , (nm)p〉 ∈ L(A) iff exists y1, . . . , yℓ ∈ N such that:

• The first state on the run is q0 : 〈(y1)p(0), . . . , (yℓ)p(0)〉 = 〈1, 0, . . . , 0〉:

ϕ1 :

ℓ∧

j=1

1 ∈q0(j),p yj

• 〈(y1)p(k), . . . , (yl)p(k)〉 is a final state of A, where k is greater or equal

to the length of all p-expansions of yi, i.e. z = pk:

ϕ2 : Pp(z) ∧
ℓ∧

j=1

z ≥ λp(yj) ∧
∨

q∈F

ℓ∧

j=1

z ∈q(j),p yj



From Automata to Formulae

〈(n1)p, . . . , (nm)p〉 ∈ L(A) iff exists y1, . . . , yℓ ∈ N such that:

• for all 0 ≤ i < k:

〈(y1)p(i), . . . , (yl)p(i)〉
〈(n1)p(i),...,(nm)p(i)〉
−−−−−−−−−−−−−→ 〈(y1)p(i + 1), . . . , (yl)p(i + 1)〉

ϕ3 : ∀t . Pp(t) ∧ t < z ∧

∧

T (q,(a1,...,am))=q′

[ ℓ∧

j=1

t ∈q(j),p yj ∧
m∧

j=1

t ∈aj ,p nj →
ℓ∧

j=1

p · t ∈q′(j),p yj

]



From Formulae to Automata

Build automata for the atomic formulae x + y = z and Vp(x) = y, then

compose them with union, intersection, negation and projection.

Corollary 1 The theories 〈N,+, Vp〉, p ≥ 2 are decidable.



The Big Picture

Presburger Arithmetic ⊂ 〈N,+, Vp〉

m m

Semilinear Sets ⊂ p-automata



Base Dependence Theorems



Base Dependence

Definition 1 Two integers p, q ∈ N are said to be multiplicatively

dependent if there exist k, l ≥ 1 such that pk = ql.

Equivalently, p and q are multiplicatively dependent iff there exists r ≥ 2

and k, l ≥ 1 such that p = rk and q = rl (why?).



Base Dependence

Lemma 1 Let p, q ≥ 2 be multiplicatively dependent integers. Let m ≥ 1

and S ⊆ N
m be a set. Then S is p-recognizable iff it is q-recognizable.

pk-definable ⇒ p-definable Let φ(x, y) : Ppk(y) ∧ y ≤ Vp(x).

We have Vpk(x) = y ⇐⇒ φ(x, y) ∧ ∀z . φ(x, z) → z ≤ y.

We have to define Ppk in 〈N,+, Vp〉.



Base Dependence

Ppk(x) : Pp(x) ∧ ∃y . x − 1 = (pk − 1)y

Indeed, if x = pak then pk − 1|x − 1.

Conversely, if assume x is a power of p but not of pk, i.e. x = pak+b, for

some 0 < b < k.

Then x − 1 = pb(pak − 1) + (pb − 1), and since pk − 1|x − 1, we have

pk − 1|pb − 1, contradiction.



Base Dependence

p-definable ⇒ pk-definable

Vpk(x) = Vpk(pk−1x) → Vp(x) = Vpk(x)

Vpk(x) = Vpk(pk−2x) → Vp(x) = pVpk(x)

. . .

Vpk(x) = Vpk(px) → Vp(x) = pk−2Vpk(x)

else Vp(x) = pk−1Vpk(x)

Example 4

V4(x) = V4(2x) → V4(x) = V2(x)

V4(x) 6= V4(2x) → 2V4(x) = V2(x)



The Theorem of Cobham-Semenov

Theorem 2 (Cobham-Semenov) Let m ≥ 1, and p, q ≥ 2 be

multiplicatively independent integers. Let s : N
m → N be a sequence. If s

is p-recognizable and q-recognizable, then s is definable in 〈N,+〉.

semilinear sets = p-recognizable ∩ q-recognizable

p,q multiplicatively independent



Exercise

1) Prove that every strictly positive natural number n ∈ N
+ has a prime

factorization. Prove that this factorization is unique.

2) The arithmetic of Skolem is the first order theory of strictly positive

natural numbers, with multiplication 〈N+, ·〉. Prove the decidability of

this theory.


