One-dimensional Integer Sets



p-ary Expansions

Given n € N, its p-ary expansion is the word w € {0,1,...,p — 1}* such
that:

n = w(O)pO + w(l)pl + ...+ w(k)pk

w is denoted also as (n),. Note that the most significant digit is w(k).

Conversely, to any word w € {0,1,...,p — 1}* corresponds its value
[w]y = w(0)p°” +w(L)p' + ... +w(k)p®.

Notice that [w], = [w0], = [w00], = ..., i.e. the trailing zeros don’t

change the value of a word.



One-dimensional Sets

We consider one-dimensional sets S C N coded in base p.

FExample 1 Powers of 2 coded in base 2:

n ()2

1 | 100000...
2 | 010000...
4 1 001000...
& | 000100...

16 | 000010. ..




One-dimensional p-Automata

A p-automaton is a finite automaton over the alphabet {0,1,...,p — 1}.

A set S C N is said to be p-recognizable iff there exists a p-automaton
A=(S,q,T,F) such that L(A) ={w | [w], € S}.

We assume that any p-automaton has a loop ¢ RN q for all g € F..

Example 2 The 2-automaton recognizing the powers of 2 s

A= ({q90,91},90,—,{q1}) where:

0
® do — qo

1
® o — (g1

0
® g1 — (g1



p-Definability

Consider the theory (N, +,V}), where p € N, and V,, : N — N is:
¢ V}?(O) =1,

o V,(x) is the greatest power of p dividing x.
(N, +, V) is strictly more expressive than Presburger Arithmetic (why?)
P,(x) is true iff z is a power of p, i.e. Py(x) : Vy(z) = =.

r €,y is true iff = is a power of p and x occurs in the p-expansion of y

with coefficient 0 < 5 < p:

TE€ipy : Pplx) N|F2dt . y=z+j- o+t ANz<ax A ({t=0V x< V(1))



p-Definability

A set S C N is p-definable iff there exists a first-order formula pg(x) of
(N, +, V},) such that:

r €S <= pg(x) holds

Example 3 The set S of powers of 2 1s 2-definable:

ws(x) : Vo(x) =2



Multi-dimensional Integer Sets



p-Recognizability and p-Definability

Let (u,v) € ({O,l,...,p— 1}2)* be a word, where u,v € {0,1,...,p— 1}*

such that |u| = |v]|.

We can pad v and v to the right with 0’s to become equal in length.
p-recognizability: a p-automaton is defined now over ({(), 1,...,p— 1}2)*.
p-definability: we consider formulae ¢g(z1,x2) of (N, +,V}).

The definitions of p-recognizability and p-definability are easily adapted to

the m-dimensional case, for any m > 0.



p-Recognizability and p-Definability

Consider T' C N? defined as:

(n,m)eT <= Vk>0.-(n)(k)V-(m)a(k)

Tm

I 00 0 0 0O
1 1.0 0 0 0 O
1 01 00 0O
1 1 1 1 0 0 O
I 00 01 00
1 1.0 0 1 1 0
I 010101
1 1 1 1 1 1 1

= o O O o o o O



p-Recognizability and p-Definability

Consider T' C N? defined as:

(n,m)eT <= Vk>0.-(n)(k)V-(m)a(k)

Tm
1 0000 00
1 100000
1 010000
(n2=2 =110 1 111000
(mz=(5)z2 =100 1 000100
1 100 1 10
1 010101
1 111111

— o O O O o o O



p-Recognizability and p-Definability

Consider T' C N? defined as:

(n,m)eT <= Vk>0.-(n)(k)V-(m)a(k)

Tm
1 000000
1 100000
1 010000
(n2=@2 = 011 1 111000
(m)z =)z =100 1 000100
1 100 110
1 010101
1111111

— o O O o o o O



p-Recognizability and p-Definability

The set T is 2-recognizable.

The set T is 2-definable:

gO(CIZl,QZ‘Q) . Vz . —I(Z €9 5131) \Y4 —I(Z &9 332)

where

r oy : Polx) Nzt . y=z4+ax+t A z<ax A (t=0V x<Vat))]



p-Recognizability and p-Definability

Theorem 1 Let M C N, m >1 and p > 2. Then M is p-recognizable if
and only if M 1s p-definable.

For any p-automaton A there exists a (N, +, V,,)-formula ¢4 which defines
L(A).

For any (N, 4, V})-formula ¢ there exists a p-automaton A, such that
L(A) is the subset of N defined by ¢.



From Automata to Formulae

Let A= (5,qo,T,F) be a p-automaton.

Suppose S = {qo,q1,--.,q—1} and replace w.l.o.g. qr by

e, = (0,...,0,1,0,...,0) € {0,1}
{—k—1
k —k—

We build a formula that defines all successful runs of A

A run is a tuple (ny,...,nm,y1,...,ys) where:
® ((n1)p,...,(Nm)p) is the word read by A

e (y1,...,ys) is the sequence of states during the run



From Automata to Formulae

r €5,y iff x is a power of p and the coeflicient of = in (y), is J:

TE€ipy @ Polx)AN[F2Ft . y=z2+j- 2+t AN z<z A (x<V,(t)Vi=0)]

Ap(7) denotes the greatest power of p occurring in (), (A,(0) = 1):

e )\,(z) = p¥, where k = the minimal length of the p-expansion of x

)=y : (z=0ANy=1)VI[Py) Ny <axAVz.(Py(2) Ny < z)— (x < 2)



From Automata to Formulae

((P1)py -5 (Mm)p) € L(A) iff exists y1,...,ys € N such that:

e The first state on the run is qo : ((y1)p(0),..., (ye)p(0)) = (1,0,...,0):

14

L - /\ 1 €g0(5),p ¥i
j=1

o ((y1)p(k),...,(y1)p(k)) is a final state of A, where k is greater or equal

to the length of all p-expansions of y;, i.e. z = p:

p2 /\/\Z>)\ Yj) /\\//\ZEQ(Japy]

qeF' =1



From Automata to Formulae

((P1)py -5 (Mm)p) € L(A) iff exists y1,...,ys € N such that:

o for all 0 < < k:

()p (), () (i) el iy G 1), ()i + 1)

p3 \V/t.Pp(t) NT<z A
14

14 m
/\ [ /\ t €q(5).p Yj N /\ t €ajpnj — /\ Pt Eq)p Yj
T(q,(at1,....am))=q’ J=1 J=1 j=1



From Formulae to Automata

Build automata for the atomic formulae x +y = z and V,(x) = y, then

compose them with union, intersection, negation and projection.

Corollary 1 The theories (N,+,V,), p > 2 are decidable.



The Big Picture

Presburger Arithmetic <  (N,+,V})

) 0

Semilinear Sets C p-automata



Base Dependence Theorems



Base Dependence

Definition 1 Two integers p,q € N are said to be multiplicatively
dependent if there exist k,1 > 1 such that p* = ¢'.

Equivalently, p and ¢ are multiplicatively dependent iff there exists r > 2
and k,l > 1 such that p = r* and ¢ = 7' (why?).



Base Dependence

Lemma 1 Let p,q > 2 be multiplicatively dependent integers. Let m > 1
and S C N be a set. Then S s p-recognizable iff it is q-recognizable.

pF-definable = p-definable Let ¢(x,y) : Pu(y) Ay < V().

We have Vi (z) =y <= o(r,y) AVz . ¢(x,2) — 2 < .

We have to define P in (N, +,V}).



Base Dependence

Pu(z) : Px)AJy .z —1=(p" -1y

Indeed, if x = p®* then p¥ — 1|z — 1.

Conversely, if assume z is a power of p but not of p¥, i.e. x = p**+b_ for
some 0 < b < k.

Then z — 1 = pb(pak — 1)+ (pb — 1), and since 10"C — 1|z — 1, we have
pk — 1|pb — 1, contradiction.



Base Dependence

p-definable = pF-definable

Vpr(@) = Vo (0" 12) = V() = V()

Vor (@) = Vo (0" 22) = V() = pVpr (@)

Vpr(@) = Vor(pz) = Vp(z) = p"*Vp(2)

p
else Vo(z) =

Example 4



The Theorem of Cobham-Semenov

Theorem 2 (Cobham-Semenov) Let m > 1, and p,q > 2 be
multiplicatively independent integers. Let s : N — N be a sequence. If s

is p-recognizable and q-recognizable, then s is definable in (N, +).

semilinear sets = p-recognizable N g-recognizable

p,q multiplicatively independent



Exercise

1) Prove that every strictly positive natural number n € NT has a prime

factorization. Prove that this factorization is unique.

2) The arithmetic of Skolem is the first order theory of strictly positive
natural numbers, with multiplication (NT,-). Prove the decidability of
this theory.



