

Preference?

• Write more properties

(soft constraints)

- i) Night properties might be hard to mic
- 2) Properties usually difficult to express
- 3) Properties can over-constrain system

Quantitative Specifications Σ ...alphabet Σ^{ω} ...set of all words/behaviors Bad Good $\varphi: \Sigma^{\omega} o Values$

Quantitative Specifications

- $\Sigma \, ... alphabet$
- Σ^{ω} ...set of all words/behaviors

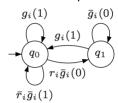
S better than S' iff value(S) ≥ value(S')

Two Main Questions

- 1. How to assign a value to a word?
- 2. How to assign a value to a system?

1. Value of a Word/Behavior

- Idea:
 - use weighted automata
 - give rewards for good behavior
- Example:
 - prefer fast reaction to request of client i



1. Value of a Word/Behavior

- · Weighted automaton A defining rewards
- Value over a behavior
 - Min/max
 - Average reward: Mean-payoff value
 Given word w, let s₀,s₁,s₂... be the run of A on w

$$MP(w) = \lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{r(s_i, s_{i+1})}{n}$$

$$value_A(w) := MP(w)$$

1. Value of a Word/Behavior

$$g_i(1)$$
 $\bar{g}_i(0)$ $g_i(1)$ q_1 q_1 $\bar{r}_i\bar{g}_i(1)$

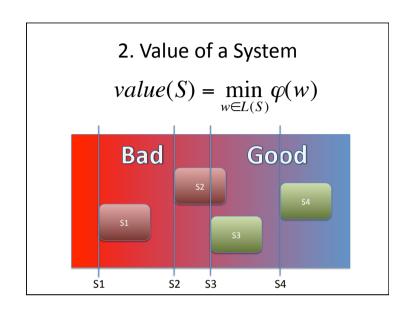
$$w_1 = (rg \ rg \ rg)^{\omega}$$
 $(111)^{\omega}$ $value(w_1) = 1$
 $w_2 = (rg \ rg \ rg)^{\omega}$ $(001)^{\omega}$ $value(w_2) = \frac{1}{3}$
 $w_3 = (rg \ rg \ rg)^{\omega}$ $(000)^{\omega}$ $value(w_3) = 0$

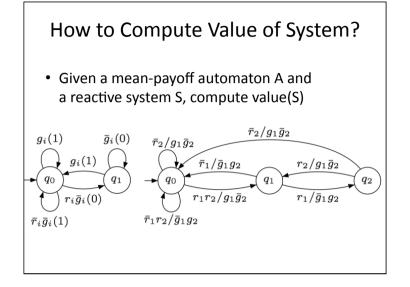
Mean-payoff automaton/specification

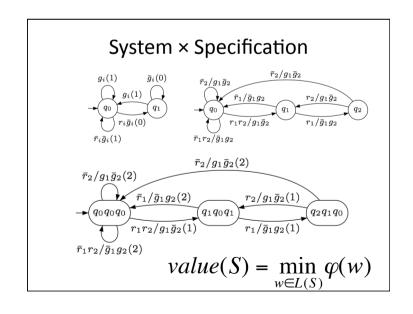
2. Value of a System

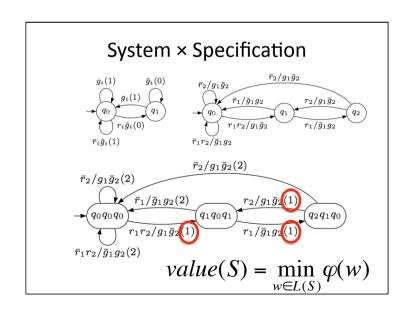
 Min/Max: Given a system S with set of behaviors L(S)

$$value(S) = \min_{w \in L(S)} \varphi(w)$$



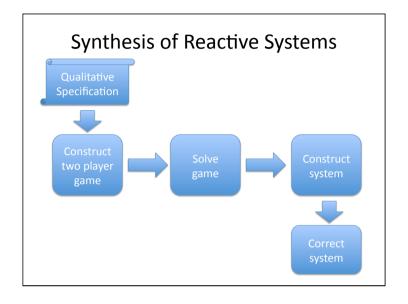


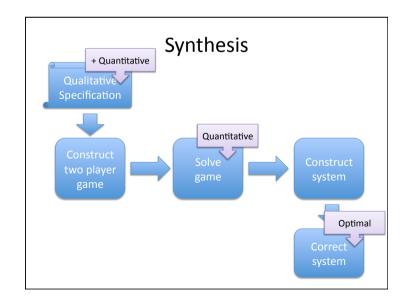


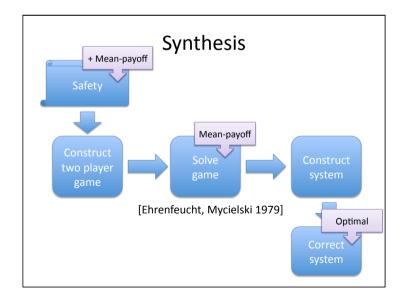


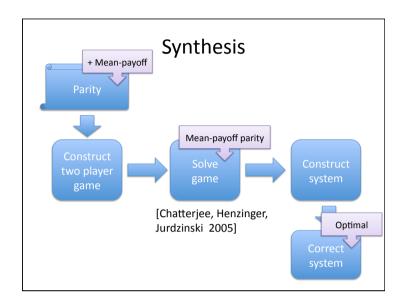
How to Construct Optimal System?

- Given a qualitative specification φ and a quantitative specification ψ , construct a reactive system S that
 - (i) satisfies φ and
 - (ii) optimizes ψ





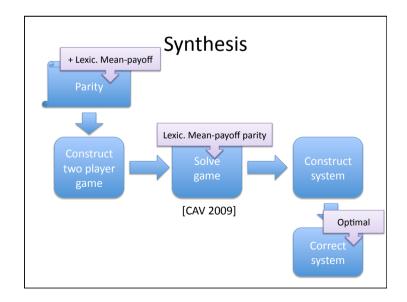




Lexicographic Extension

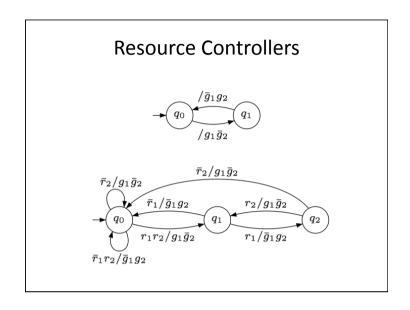
- Combining quantitative specifications
- Weighted automata with tuples:
 - Natural numbers $value_A : \Sigma^\omega \to R$
 - Vectors $lvalue_A : \Sigma^\omega \longrightarrow R^d$

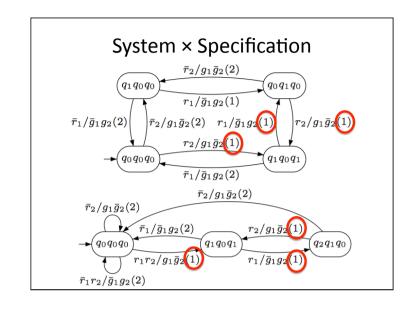
$$LMP(w) = \lim_{n \to \infty} \sum_{i=0}^{n-1} \vec{r}(s_i, s_{i+1})$$

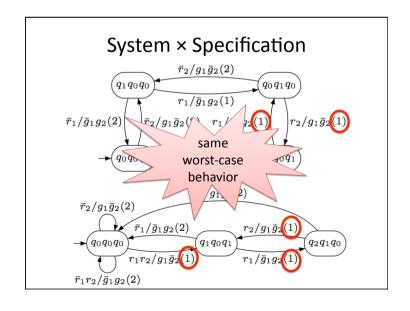


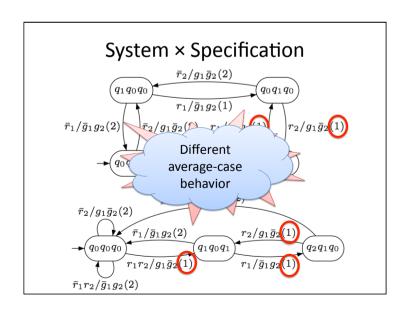
Value of System (revisited)

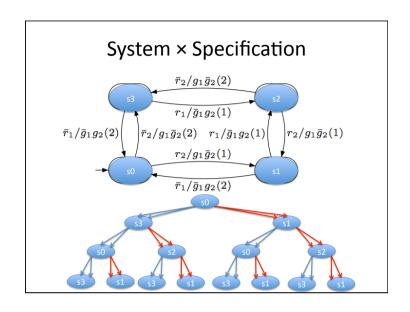
- Recall, resource controller
- Aim: fast response, value_{A1} + value_{A2}
- Worse-case behavior?
- Worse-case input? $(r_1r_2)^{\omega}$
- Best response? $(g_1 \overline{g}_2 \overline{g}_1 g_2)^{\omega}$

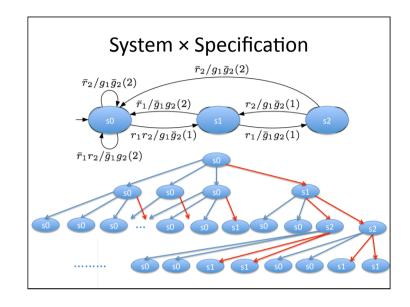


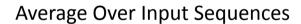


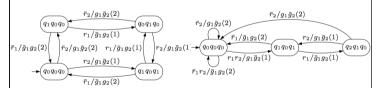








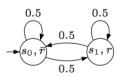




- In all states "equally frequently visited"
- Reward in every state: $\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = 1.5$
- Average behavior: $(4 \cdot 1.5) / 4 = 1.5$
- s0 is visited more often s0: 2/3, s1: 2/9, s2: 1/9
- Rewards: s0: $\frac{3}{4} \cdot 2 + \frac{1}{4} \cdot 1 = 1.75$ s1,s2: $\frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 2 = 1.5$
- Average behavior: 1.67

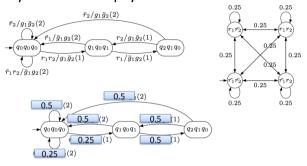
Markov Chain – Input Distribution

• How likely are different input values?



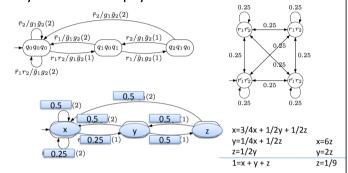
Compute Value wrt Probabilistic Environ. Assumption

• System × mean-payoff × Markov chain



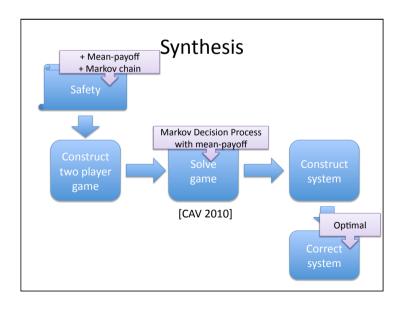
Compute Value wrt Probabilistic Environ. Assumption

• System × mean-payoff × Markov chain



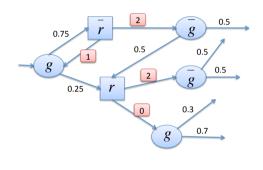
How to Construct Optimal System?

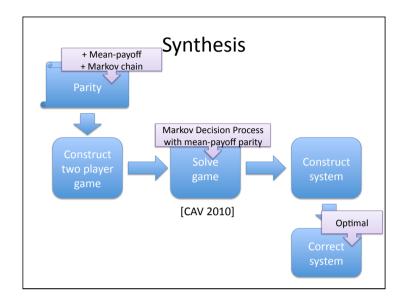
- Given a qualitative specification φ and a quantitative specification ψ and, a probabilistic environment assumption μ construct a reactive system S that
 - (i) satisfies φ with probability 1 under μ
 - (ii) optimizes ψ under μ



Markov Decision Process

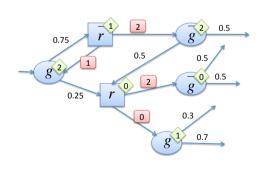
• Safety × mean-payoff × Markov chain = MDP





Markov Decision Process

• Safety × mean-payoff × Markov chain = MDP



MDPs with mean-payoff parity

- Polynomial-time algorithm [CAV 2010]
- End-components: set of states that is stronglyconnected and closed for probabilistic player
- Key observation:
- MP-parity value in an end component with even minimal priority is equal to MP value
- Computes maximal end components with even minimal priority
- Fix value for these states to corresponding MP value
- Compute way to best end component

Summary

- Quantities are good for verification & synthesis
 - to rank implementations wrt preference
 - to state "soft" properties
- Value of word
 - Mean-payoff automata (weighted automata that average over weights)
 - Lexicographic extension
- Value of system
 - Min/Max value over words: lexicographic MP-parity
 - Average value over words: MDP with MP-parity