THE NUMERICAL TRANSITION
SYSTEMS LIBRARY
Version 1.0

CONTRIBUTORS

RADU |OSIF (VERIMAG/CNRYS)
FiLiP KONECNY (VERIMAG/FIT VUTBR)
MARIUS BozGA (VERIMAG/CNRYS)

Contents

1 The Numerical Transition Language 3
1.0.1 TwoWarm-upExamples 4
1.1 Lexical Structure 5
1.2 TypesandDeclarations 6
121 AIrayS. o 7
1.2.2 Formal Syntax of Declarations 8
1.3 First-order Arithmetic 9
1.3.1 LiteralsandTerms 9
1.3.2 Atomic Propositions and Formulae 11
14 BasicSystems 14
1.5 Hierarchical Systems 15
151 TwoExamples 17
16 ParallelSystems. 0 18
1.7 Global NTS Specification 19
1.7.1 Lamport’s Bakery Protocol 19
1.8 Annotations 21
2 Numerical Transition Systems 23
21 BasicNTS 26
2.1.1 A Classification of BNTS (skip on firstreading) 26
2.2 Array NTS 28
2.3 Hierarchical NTS 29
24 ParallelNTS. 31

Chapter 1

The Numerical Transition Language

Numerical Transition Systems (NTS, also referred to as Gu8ystems, Counter
Automata or Counter Machines) are simple models of compmutativolving in-
finite (or very large) data domains, such as integers or realbers. Despite
their apparent simplicity, NTS can, in principle, model ameal-life computer
system, ranging from hardware circuits to programs. As &equence, an im-
portant number of tools have emerged, addressing verditg@iioblems, such as
reachability or termination, and deploying various tedueis (widening, predi-
cate abstraction, acceleration, etc.).

The Numerical Transition Languages a common language for describing
numerical transition systems. In addition to the basicascllpes, we consider
one-dimensional array types, defined over scalars. Thergemaf array manip-
ulation interprets arrays as functions, and considers tde first-class citizens.

Since even the most simple programs are usually structatedsubcompo-
nents, we consider systems that are described as compgsiafosubsystems.
There are two types of compositionsierarchical (a subsystem invokes another
subsystem in the same way a procedure invokes another pirececda program)
and parallel (two or more subsystems run in parallel and communicatehea t
global variables).

The design of the Numerical Transition Language (NTL) igired by the
input language of several existing tools for the analysiswaherical transition
systems, such as: ARMC, FAST, FLATA and INTERPROC. Although alsin
tool is unlikely to deal with models using all the features\dfL (such as e.g.,
parallel recursive systems with arrays), most tools caat traportant subfrag-
ments of the language, and are amenable to extensions. mhef NTL is not
that of replacing existing languages, but rather that o¥iging means of inter-
operability between tools developed by different groupsl based on different
principles.

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.0.1 Two Warm-up Examples

The following example is an NTS implementing the Syracusetion:

nts syracuse,

syracuse {
inx: int; // x contains the input value at the initial state
out y : int; // y contains the output value at the final state
initial si; [/ initial state
final sf; [l final state

si ->sf {exists k: (int . 2*k=x and y' =k) }

Il if xis even return x/2

si ->sf {exists k: (int . 2*k+l=x and y' =3*x+1) }
[l if x is odd return 3*x+1

}

main {

n: int; // alocal variable
initial sO;

final s3;

sO ->s1 {n>0}// nisrandonly assigned a strictly positive val ue
sl ->s2 { n" =syracuse(n) } // apply syracuse to n

s2 -> sl { n>1 and havoc() } // repeat while n>1

s2 ->s3 { n=1 and havoc() } // finish when n=1

Experimental evidence shows that this system terminatea farge set of
initial values of n. However, no general termination proa$ibeen given so far.
The following example is an NTS implementing McCarthy’s 9fdtion:

nts nccarthy;

nc9l {
inx: int;
out y : int;
t . int;
initial si;
final sf;
Il if x>100return x—10
si ->sf { x>100 and y’' =x-10 and havoc(y) }
Il else return meAL(mO1(x+11))

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

si -> sl { x<100 and havoc() }
Il tis needed to conpose the recursive calls
sl ->s2 { t'=nc9l(x+11) }
s2 ->sf { y =nc9l(t) }
¥

main {
i,j . int;
initial si;
error se; // error state
si ->sl {j'=nc9l(i) }
[l error if not j=i—10for i>101
sl ->se {i>101 and j!=i-10 and havoc() }
[l error if not i=91for i<101
sl ->se {i<=101 and j!=91 and havoc() }

Although a proof of correctness for McCarthy91 exists, thisction is still
considered to be a challenge for automated program vetrificalNotice also the
different properties checked: termination for the Syracesample, and safety
(unreachability of error states) for the McCarthy91 example

1.1 Lexical Structure

An NTL specification is a sequence of tokens. The tokens afieatkeby the
following syntax:

(type = ({int,real bool}
(numera} = {0} | {1..9}{0..9}*
(decima} = (numera} {.}{0..9}"
(boolean := {true,false}
(idn) == {a.z,A.Z}{a..z,A..Z,0..9,_}*
(idp) = (idn) {'}
(id) == (idny | (idp)

Note the distinction betweamprimeddentifiers(idn), used to denote current
values of variables, angrimedidentifiers(idp), used to denote their values after
one transition step.

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.2 Types and Declarations

The basic (also refer ed to as scalar) types of NTL are: badleaol), integer
(int) and real feal). Variables are declared in blocks of the same type, e.g.:

x1,x2,x3 : int
Declaration blocks can be chained as in, e.g.:
x1,x2,x3 : int, x4,x5 : real

Since we consider systems that are compositions of sulbsysthe classical no-
tions ofglobalandlocal variable declarations apply. Global variables are dedlare
outside the body of a subsystem, and are visible everywinettgei system. Lo-
cal variables are declared inside the body of particulasygstem, and are visible
inside that body only. For instance:

gl : int, g2 : real; // global declarations
main {

[1 : int, |2 : real: // local declarations
}

The names of local variables must not conflict with globalalale names (in
other words, variable shadowing is not supported).

A variable can be declared to bgparameter meaning that its value does not
change during the execution. Parameters are specified msergthe declaration
sequence between the keywqar and a semicolon as in, e.g.:

par x1,x2,x3 : int;

A subsystem may declare certain local variablegpst and other a®utputas
in, e.g.:

foo {

inil: int, i2: bool, i3, i4: int;
out 0ol, 02, 03 : int, 04 : real;

}

The order in which input and output variables are declareahrtant for invo-
cation (hierarchical composition), thus the modifisrsand out specify ordered
sequencesf variables.

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.2.1 Arrays

The NTL language considers multi-dimensional arrays of@rye basic types.
There are two kinds of declarations: arrays angy referencesin the first case
one must give the size as an arithmetic term of typeas in e.g.:

X[5] : int, y[N, z[2*N+3*Mt5] : real;

The variables occurring in a size specifier must be scalanpeaters of typént.
Size specifier may also involve array-size operators aghreinput arrays of a
subsystem (see Section 1.5). If the size is not specified denkares an array
reference, e.g.:

a[], b[] : int;

An array reference is used as a name for array objects. Aefayences are the
only array variables that can be assigned to in a transigtation (the meaning
of assignments to array references will be made clear ingiResection).

The elements of an arra|N] are indexed 0..,N— 1. If ais an array or an
array reference, the expressi@hdenotes the size @ For instance in the exam-
ple below,|a] =5, and|b| = 0, if bis not initialized, whereafh| = 5, immediately
following the assignment @ to b.

a[5],b[] : int; // |aj=5 |b/=0
b=a // |[aj=5 |b|=5

Multi-dimensional arrays are declared by multiple sizecHpers of the form

ale)...[em][]...[] 1 T

n—times

wherem+n > 1, 1 is a basic type, and, ..., ey are well-typed index terms (de-
fined in Section 1.3.1). Thea,is said to be am-dimensional array of references
to n-dimensional arrays over the basic type

For instance, consider the following declaration:

c[2][3] : int, d[2][], e[][] : real;

Herec denotes an array of size 2 of arrays of size 3 of integers, edseris an
array of size 2 of real array references. Notice that oneaezsheclare an array of
references to arrays of specified sizes, e.qg.:

f[1[3] : int; /] illegal declaration

7

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

As will be discussed next, one can assign an integer valag|f@f, for 0<i < 2

and 0< j < 3, and an array object @ji], for 0<i < 2. However, assigning tdi],

for 0 <i < 2 is not permitted, sinceli] is an array object, not an array reference.
A purearray reference is an array declared in the form

al]...[] 1
n—times

wheren > 0 andt is a basic type. All input and output array variables of sub-
systems are required to be pure references (g.¢g. but nota, c, d in the above
example).

1.2.2 Formal Syntax of Declarations

The full formal syntax of NTL variable declarations is giveglow. The(arith-term)
non-terminal is defined in Section 1.3.1. T(annotation$ non-terminal is de-
fined in Section 1.8.

(basig := (annotation$ (idn)
(array) basig [(arith-term)]
array) [(arith-term)]
(array-ref)

(array-pure-ref

(array-pure-ref []

(decl-lity = (basig | (array) | (array-ref)
(decl-litsy = (decl-lits) , (decl-lit)
| (decl-lit)
(decl-block := (decl-lity : (type
(decl-block$::= (decl-blocks , (decl-block
| (decl-block
(decl-par-lity ::= (basig | (array)
(decl-par-lits decl-par-litg , (idn)

(decl-par-block ::
(decl-par-blocks ::

decl-par-lity : (type
decl-par-blocks , (decl-par-block

{
{
(decl-par-lit)
(
{
(decl-par-block

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

(decl-io-lity = (basig | (array-pure-ref
(decl-io-lits) = (d-io-lits) , (idn)
| (d-io-lit)

(decl-io-block ::= (decl-io-lity : (type
(decl-io-blocks ::= (decl-io-block$, (decl-io-block
| (decl-io-block

(dech := (decl-blocks ; | par (decl-par-blocks ;
(decl-gloh := (decl-gloh (dec) | €
(in) = in (decl-io-blocks$; | €
(outy = out (decl-io-blocks ; | €
(decl-log ::= (decl-log (dec) | (in) (out)

Notice that array references cannot be declared as panangitece the parame-
ters cannot be assigned to, whereas the array referenceséerseful only via
assignments. Also, only pure array references can be sgrifthe input/output
declaration of a subsystem, since passing arrays to sensystas the same effect
as assigning to them. For a detailed discussion on arragrassit, one can refer
to Section 1.3.2.

1.3 First-order Arithmetic

The NTL language relies on first-order arithmetic in orded#scribe the initial
configurations and the transition relation of systems. FBhistion describes the
syntax adopted for writing first-order arithmetic formulae

1.3.1 Literals and Terms

A boolean literalis either a variable identifier or a boolean constémig or false).

A boolean termis an expression composed of boolean literals connectetheia
boolean operatonsot, and, or, imply andequiv. Precedence of the connectives
is as follows:not > and > or > imply > equiv. These operators may be short-
handed byl C++-like operators , &&, | | , - >, <->. The formal syntax of boolean
terms is given below:

(bop
(not)

(bool-lit)
(bool-term

{and70r7imply7eqUiV7&&7| | "2 <s >}
{not,! }

(id) | true | false

(bool-lit) | ((bool-term)

(not) (bool-term

(bool-term (bop) (bool-term

9

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

An arithmetic literalis either a variable identifier, the keywotid (denoting
the current thread identifier), or a positive numeral. Thiaretic and array terms
are defined recursively.

Given an array declaration

n—times

wherem+n > 1,Tis a basic type, ane, . .., ey are arithmetic terms calladdex
terms the following are valid array terms and their correspogdiypes {x are
index terms in the following)

array term type
1) El int
2) | ali1]. .. [imen] T
3)| ali1]...[ik] | (n—k)-dimensional array over (0 < k < m+n)
4) | alia]. . [imen] T
5) | ali1]...[im] reference tm-dimensional array over

An arithmetic termis an expression consisting of arithmetic literals andyarra
terms of kind 2 and 2, connected via the arithmetic operatets , *, / and%
(remainder) and brackets. The arithmetic operators havelatd precedence i.e.,
*, | and%have precedence overand- . The%operator is restricted timt type.
The semantics df and%for theint type is given below:

xXy=z iff 0<z<|yland3k.kxy=x—z
x/y=z iff (y*x2z)+ (x%y) =X

For instance, given a declaration

X, Yy, a[N : int;

the following is a valid arithmetic term:
2 x + (- 3y) + (- 7) +]al + a[0]

The use of array terms of kind 3- 5) will become apparent in Section 1.3.2.
The formal syntax of arithmetic terms is given below:

10

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

(arith-lit) = (id) | tid | (numera} | (decima}
(array-read := (idn) [(arith-lit)] | (array-read [(arith-lit)]
(array-termy = (array-read | |(idn)]

<a0p> = {+7_7*7/7%}
(sign = {-}[¢

(arith-term) signy (arith-lit) | (sign (array-term
(arith-term))

(
(
(arith-term) (aop) (arith-term)
(
[
(

(arith-list)
(multi) =
(array-write) =

arith-term) | (arith-list) , (arith-term)
(arith-term)] (multi) | [(arith-list)] | €
idp) (multi)

Typing Rules

The typing rules for arithmetic terms are simple. A primadrhlx' always has
the same type as the corresponding unprimed literaAll literals occurring in
one term must have the same basic type, which, in turn, isythe df the term.
Furthermore, an arithmetic term can be only of typteor real. In particular, the
tid literal is implicitly of typeint. For instance, the term 2*x + (- 3*y) + (- 7) is
well typed if and only if x and y are variables of the same typlich must be one
of int orreal.

In particular, index terms, ..., ix of an array terna]i4] . .. [ix] must be of type
int, and moreover, no primed variables are allowed to occudénisi...,ix. For
instanceA[3xn+2x |b|+ 5| is a valid array literal if and only ifi is a variable of
typeint, whereasA[3xn' + 2 |b| + 5| is not, since the indexing term contains a
primed variable.

1.3.2 Atomic Propositions and Formulae

An atomic proposition is either a boolean term, or a relatibthe formt; ~ to,
wheret; andt; are arithmetic terms of the same type, and {=,! =, <=, <,
>=,>1}is a binary relation symbol. The left- and the right-handesifi~ must
be of the same type.

To define array assignments, consider again the followirayateclaration

alel]...[eml[]---[] ' T
H.,—J
n—times
in other words,a is mdimensional array of references medimensional arrays

over typet wherem+n> 1. Assignments ta are restricted to the following two

forms:
alig)...[im =t (if n>0)

Afia]...[imin] = U

11

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

whereiy are well-typed index-termsjs a valid array term exposing adimensional
array (reference) over type andu is an expression of type. Moreover, no
primed symbol can appear irandu. For example, consider the following decla-
ration:

a[l, bfl, c[3], d[2][], e[l] : int;

Hered =c, b/ =a, d'[1] = b, d'[0][1] = 5, € = d are valid atomic propositions.
However, assignments = a, andd’ = e are incorrect in the context of the above
declarations.

Additionally, we allow atomic formulae for multiple assigwents of the form

a/[i]_]...[im_l][jl,...,jk] = [t1,...,t] (if n>0)
a/[i]_]...[iern,l][j]_,...,jk] = [ul,...,uk]

which denotes an assignment to positions

dfia]...[im-a][ja]
alig]... fim_l][jk]
or, respectively, to positions
alfia]...[imen-1]i1]
anda[i1] ... [irgn+n—l] [i]

Multiple assignments are interpreted as a succession of basignments
performed from left to right, i.e. first assigning &ji1]...[im-1][j1] and last to
ali1]...[im-1][ix]. More details can be found in Section 2.2.

Note that unprimed array terms of the foaii1] ... [imtn| can be used freely
in arithmetic terms, as discussed in Section 1.3.1, fonmst:

a[i+1] = a[i]
a[n] <=d[2*n-1][0] + |a] + 1
b[2*n] >= e[n][k]

However, the atomic terrd2[0] = a is not a valid one, sincél[0] anda are
not valid arithmetic terms.

The formal syntax of atomic propositions is given below (aatits ofhavoc
is explained at the end of this section):

12

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

(rop) = {=!=<=,<,>=,>}
(mop = (rop) | (bop)
(idn-list)y = (idn) | (idn-list) , (idn)
(idn-list-e) = (idn-list) | €
(havoo := havoc ((idn-list-e))
(atom) bool-term

(
(arith-term) (rop) (arith-term)
(array-write) = [(arith-list)]
(havog

The syntax of formulae is given below:

(quantifiey = {forall,exists}
(g-type == (type | (type [(arith-term), (arith-term)]
(formula) atom | ((formula)

=
| (formula) (bop (formula) | not (formula)
| (quantifien (idn-list) : (g-type . (formula)

Notice that quantified variables must be typed by a basidggctype. Conse-
quently, array variables cannot occur in the scope of a ffiantAlso, the quan-
tified variables are supposed to be unprimed. The use ofvalgewithin type
specifications of quantified variables is meant as syntaagar, namely:

e forall i: t[ty,t2]. @(i) stands foforall i: 1. (ty <=iandi <=ty imply @(i))
e existsi: T[t1, tp] . @(i) stands foexistsi: 1. (t1 <=iandi <=ty and ¢(i))
For example, the following are syntactically valid formera

N:int, x,y,z,a[N : int;
forall i : int[O,N2] . (a[i+l] > a[i])
existsn: int . (y*n<=xandx <y?* (n+1) and z' =n)

The first formula above expresses the fact that a sorted integer array without
duplicate values. The second one encodes the integerativisiationz = L§J.

Furthermore, as a syntactical sugar, one can use-tbeerator instead of the
equiv operator. As an example, given a declaratgrb, : bool, the following are
valid and equivalent assignements:

e b, equiv by or by
o b, = (bl or bz)

Also note that one can writg, as a shorthand fd¥, = true.

13

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

About Implicit Copies

The intuition behind the use of primed identifiers is that ecusrence of a primed
variable identifier in an atomic proposition has the effda@massignment to that
variable (i.e., it produces a possible change of its valubemext step). In order
to improve readability of the transition rules, we define

havodX) = /\ X =x
XZX

whereX are variables in the current scope. For instance, given@eseah vari-
ablesx,y,z,w, a formula

(z<=w and x’ =5 and havoc(x)) or (y'<=3 and havoc(y))
is a shorthand for

(z<=w and x'=5 and y’'=y and z'=z and w =w) or
(y'<=3 and x’=x and z’'=z and w =w)

Note thaty in the first disjunct and’ in the second disjunct are left random.

About Assignments to Array References

Since arrays are considered first-class values (i.e., Beggiences of scalar data
values), an assignment to an array variable would chande it®size and its
content. However, changing the size of an array variableh s c[5] :int in the
example above, would result in an array value that would bersistent with the
declaration. Hence we allow only assignments to array eefegs , whom sizes
are not declared, e.g. a[], b[nt.

1.4 Basic Systems

A basic NTS is a component of a global system. A basic NTS istified by a
unique name thatis visible in the entire system. The bodybafsac NTS specifies
the local variables (including input and output variableldeations), thenitial,
final anderror states, and a list of transitions. Typically, final states @sed to
check termination, whereas error states are used to sfatg peoperties. Formal
definitions of these properties are given in the next chapter

A transition is defined by a source state, a destination stiadiea transition
rule. For instance, the following transition rule chandes ¢ontrol from state gl
to g2 and increments the value of the variable x if it is less1th00:

14

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

ql -> g2 { x<=100 and x' =x+1 }

Optionally, transitions can be labeled by identifiers tha&t @anique within their
scope (the body of the NTS definition). These identifiers camided to display
error traces. For instance:

tl: gl -> g2 { x<=100 and x’ =x+1 }

There are two kinds of transition rulearithmetic relationsandcalls to other
subsystems (basic NTS). All variables that do not appeanewtiin a transition
relation implicitly carry their values from the source tettlestination state. Con-
sequently, an empty rule carries all values from the sourtieet destination state.

The formal syntax of basic NTS definition is given below. T{eall) non-
terminal is defined in the next section. Tl&ates non-terminal serves as an
optional declaration of control states (see Section 1.&$gurpose):

(rule)
(transition)

(formula) | (call) | €

(idn) *->' (idn) (annotation$ '{" (rule) '}’

(idn) : (idn) ’->" (idn) (annotation$ '{’ (rule) '}’
(transition) (transitions | €

(transitiong

(statelis} ::= (statelist , (idn) | (idn)
(statelist-a 1= (statelis} , (annotation$ (idn) | (annotation$ (idn)
(states = states (statelist-a ; | €

(statesinif = initial (statelis} ;

(statesfin ::= final (statelis} ; | €

(stateserfy = error (statelis} ; | €
(statemarks 1= (state$ (states-ini} (states-fin (states-ery
(nts-body := (declar-log (statemarks (transitions

(nts-basi¢ ::= (annotation$ (idn) '{’ (nts-body '}’

Notice that a basic NTS must specify at least one initiakstat

1.5 Hierarchical Systems

A hierarchical NTS is a collection of basic NTS, of which soare denoted as
entry points of the system. The entry points can be given itohal instance
declaration, which also defines the parallel threads (ts&ante declaration is
presented in detail in the next section). For sequentiaksys with only one
entry point, this can be specified using the namaan.

15

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

In a hierarchical NTS basic subsystems can invoke otherystdrss, viecall
transition rules. A call rule consists of a name of a called arlist of actual
parameters (arithmetic terms) followed by a list of primetlirn variables.

The types of the actual parameter terms must match the typepuw vari-
ables of the callee. Similarly, the types of the return J@ga must match the
types of the output variables of the callee. In particulae, input array variables
(which must be declared as pure references) match with ot eeferences and
arrays of the same basic type. On the other hand, the outpytaariables (which
must be declared as pure references too) match only withguag references of
the same basic type. Note that passing arrays as formal paaesnor returning
arrays, has the same effect as assigning to array refereRoeshe reasons de-
scribed in section 1.3.2' may appear at most once in the list of return variables
for each array variabla.

For instance, consider the following declarations:

foo {
in (il i2:int, r : real, a[] : int)
out (n: int, i3, b[] : int)
}
bar {
in(x: int, q: real)
out (m: int, c[] : int)
par N: int;
dN, vy, z: int;
¥

Then,bar can callfoo as follows:
foo(x+3, xty,q,d, m,y ,c’) (1.1
As a syntactic sugar, we allow also the following:
(m,y",c") = foo(x+3,x+y,q,d) (1.2)
Variables that do not appear in the list of return variablsain unchanged
upon return. One may also specify explicitely which varshlemain unchanged
upon return usingpavoc

(m,y ,c) = foo(x+3,x+y,q,d) and havoc(my, c) (1.3)

16

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

(m,y ,c") = foo(x+3,x+y,q,d) and havoc(my,c,d) (1.4)

Note that (1.1), (1.2), and (1.3) are equivalent. HoweveB)(is not equivalent to
(1.4) since variabld is left random in (1.4).
The formal syntax of a call rule is given below:

(arglist)y = (arith-list) | €
(ret-terms = (idp) | (ret-terms , (idp)
(retlist)y = (ret- term$ | €
(call-base := (idn) ((arglist) , (retlist))
| (idp) = (idn) ((arglist))
| ((ret-termsg) = (idn) ((arglist))
(call) := (call-base | (call-base and (havog

1.5.1 Two Examples
The example below implements Fibonacci’s recursive famcti

nts fibonacci;

fib {
inXx: int;
out y : int;
tl, t2: int;
initial si;
final sf;
si ->sf { x=0 and y’'=0 and havoc(y) }
si ->sf { x=1 and y’=1 and havoc(y) }
si -> sl { x>1 and havoc() }
sl ->s2 {t1'=fib(x-2) }
s2 ->s3 {t2'=fib(x-1) }
s3 -> sf { y'=t1+t2 and havoc(y) }
}
main {
X, y . int;
initial si;
error se;

si -> sl { x>=0 and havoc() }
s2 ->s2 {y=fib(x) }
s2 -> se { x>=4 and y<=x and havoc() }

The example below describes an NTS that concatenates taysarr

17

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

nt s concatenation;

concat {
inal[], az2[] : int;
out a[] : int;
t[|al|+la2]] : int, i : int;
initial si;
final sf;
si ->sl1 {i'=0 and havoc(i) }

sl ->sl {i<|al] and t'[i]=al[i] and i'=i+1 and havoc(t,i) }
sl ->s2 {i=lal] and i'=0 and havoc(i) }
s2 ->s2 {i<la2| and t'[i+|al|]=a2[i] and i’'=i+1 and havoc(t,i) }
s2 ->sf {i=|a2|] and a'=t and havoc(a) }
}

1.6 Parallel Systems

A parallel NTS is a collection of basic NTS with a global spieaition of instances
that run in parallel. For example

par N: int;
i nstances producer[N, consumer[2*N;

declares a parametric concurrent system in which there arestances of the
producer thread running in parallel with 2*N instances @& tonsumer thread.
As a general rule, the NTS used in arstancesdeclaration must not declare
input nor output variables.

Each instance has access to a predefined vatiabtd typeint. Two different
instances have differetitl values. Moreover, the order in which the instances are
specified determines the value of ttié variable. For instance, in the example
above the value did for producer threads ranges between 0 Hrd1, whereas
the value oftid for consumer threads ranges betwé&kand 2«N — 1. Since the
values oftid are pairwise distinct, all values in the above ranges ard.uBkese
considerations are useful to the specification of parajietesns with shared array
resources.

The following gives the formal syntax of the instance deatian:

(instancé = (idn) [(arith-term)]
(inst-listy = (instancé | (inst-list), (instancé
(instance$ = instances (inst-list) ;

18

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

1.7 Global NTS Specification

The global specification of an NTS consists of a declarati@haial variables and
parameters, an initial condition (a formula describingitiigal configurations),
an instance declaration, and a list of basic NTS. The intoaddition is written
using full first-order arithmetic, e.g.:

par N: int;
a[N : int;
init forall i : int[O,N1] . a[i] = 0;

The formal syntax of a global NTS specification is given belolhe start
symbol is the(system non-terminal.

(nts-namég := (annotation$ nts (idn) ;
(init) = init (formula ;
(nts-lish = (nts-basi¢ (nts-lish | €
(nty = (nts-nameé (decl-gloh (init) (instance$s (nts-list

1.7.1 Lamport’'s Bakery Protocol

nts bakery;

/'l global declarations

par N: int;
choose[N : int;
nuni N : int;
CS[N : bool;

/1 initial condition on global variables
i nit forall i : int[O,N1] . (choose[i]=0 and
nunfi]=0 and not CS[i]) and N>0;

Il note that the order of entry points determnes their tids:
/1 tid of bakery threads will be in range [0...N1] and

/1 tid of the nonitor thread will be N

i nstances bakery[N], monitor[1];

Il bakery threads
bakery {
initial si;
sl ->s2 { lock(tid) }

19

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

s2 -> sl { unlock(tid) }
¥
[l monitor thread
moni tor {
initial si;
error se;
si ->se { existsi,j: int[O,N1] . (i!5 and
CS[i] and CS[j]) and havoc() }
}

| ock {

ini : int;

max . int, | . int;
initial si;

final sb5;

Il set max
sl ->s2 { choose’'[i] =1 and max’ =0 and |’ =0
and havoc(max, choose,j) }
s2 ->s2 { j<N and max >= nun{j] and j’' = +1
and havoc(j) }
s2 ->s2 { j<Nand max < nun{j] and max’=nun{j] and j'=j+1
and havoc(nmax,j) }
s2 ->s3 { j=N and choose’'[i] =0 and |’ =0
and havoc(choose,j) }

Il wait for entering the critical section
s3 ->s3 { j<N and choose[j] !'= 0 and havoc() }
s3 ->s4 { j<N and choose[j] = 0 and havoc() }
s4 ->s4 { nun{j]!=0 and (nunfj]<nuni{i] or
nun{jl=nunii] and j<i) and havoc() }
s4 ->s3 { not (nun{j]!=0 and (nunfj]<nun{i] or
nun{jl=nunii] and j<i)) and j’'=j+1 and havoc(j) }

[l enter the critical section
s3->s5 {j=Nand CS[i]=true and havoc(CS) }

}

unl ock {
ini : int;
initial si;
final s2;

20

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

[/ leave the critical section
sl ->s2 { CS[i]=false and num [i]=0 and havoc(CS, num }

}

1.8 Annotations

Some syntactical elements of the NTS can be annotated. Maimelglobal NTS,

its subsystems, control states, transitions, and vasable the case of global
systems, subsystems, transitions, and variables, thetaimmis placed before
their definition (see sections 1.2.2, 1.4, and 1.7). In otdellow annotations of
control states, théstatesdegl declaration block is introduced (see Section 1.4),
which contains a list of (annotated) control states. Notd #uch (annotated)
declaration can be partial, in other words, not all the curdtates used later in
a definition of transitions have to appear there. An anrmtatan be of typent,
real, bool, string, or formula The formal syntax for annotations follows:

(string) = " (PRINTABLE-CHAR "

(a-type-val = int : (sign (numera)

| real : (sign) (decima}

| bool : (boolean

| string : (string)

| formula : (formula)
(annotation = @ (idn) : (a-type-val ;
(annotation$:= (annotation$ (annotation | €

The following example illustrates the use of annotations:

@nv:formula: x=0 and x<=11; // annotation of global NTS
@ine:int:101;, @ol:int:5; // annotation of global variable x
X . int;

init x=0;

@nv:formula: x<=11; // subsystem annotation

min {
@ine:int:101;, @ol:int:15; // annotation of local variabley
y : int;

states // partial declaration of control states
@ine:int:5; // annotation of the control state sl
sl

initial si;

21

CHAPTER 1. THE NUMERICAL TRANSITION LANGUAGE

final s2;

sl -> sl @ine:int:105 @ol:int:1; // annotation of a transition
{ x<0 and x’ =x+1 }

sl ->s2 { x=0 and x'=x }

s2 -> s2 { x<=10 and x’ =x+1 }

22

Chapter 2

Numerical Transition Systems

In the following, the symbol$, N, N, Z andR are used to denote the sets
of booleans, natural, strictly positive natural, integatjonal and real numbers,
respectively.

Let D be adata domain or simply domain. Each domain has an associated
first-order logical theorylp = (D, X, {R},,{fi}i",;) consisting of:

e a (possibly infinite countable) set of variabl&s
e a (possibly infinite countable) set of predicate symHéig{’ ;
e a (possibly infinite countable) set of function symbpfs}™

all ranging over the universe. As usual, we consider constants to be functions
of zero arity.

The alphabetof 7y is the set of all variables, predicate and function symbols
of I, together with the classical first-order logic connectivesA, —, 3, V and
the equality sign=. A termof 7 is either a variable € X, or a function symbol
f(t1,...,tn) applied to a number of terms equal to its arity. An atomic psipon
is eithert; =tp, or p(ty,...,ty) for a predicate symbol of arity and termdz _n.
Thelanguageof 7y is the set of all syntactically valid first-order formulaeildu
from atomic propositions, using the first-order connective

Each atomic propositiom in the language offy has an attacheduard de-
noted G (m), which is a formula also in the language®f. Unless specified, we
assume the guard to be true. The guard of a first-order forrawafined induc-
tively:

e G(D1AD2) = G(d1Ad2) = G(d1) A G(92)
e G(IX. $)=G(Vx.¢)=G(—9) = G(9)

23

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

Given two (or more) domain®; andD, with associated first-order theories
o, = (D1, {R}I2,, {fi}™) and T, = (D2, {R }12,, { fi}[®), the disjoint union
of Ip, and7p, is defined as:

To,ep, = (D1 D2, Xy W Xo, {R}E W {R 2, { it w{fi}2)

An atomic proposition offp,.p, is either an atomic proposition @f, or of 7,
i.e., without mixing variables, predicates or function $ots from both theories.
The language offp,.p, is the set of all syntactically valid first-order formulae
build from the atomic propositions oy, up,.

Given a finite set of domairBy, ..., Dk, a multi-domaimumerical transition
systen(NTS) is a tuple

S= <{Di}=(:17 {xi}g(:b {pi}g(:la {Xgn}ik:b {X?UI}F:L Q.1,F, E7A>

where, foralli = 1,... k

e X; is a set ofstate variablesanging overD;. W.l.o.g. we require that
XiNX;=0,foralli# j.

An interpretationof the state variables is a mappwng X; — D;. We denote
by X/ the set of primed variables i.gx | x € X}, and byv; : X' — Dj an
interpretation of the primed variables.

The set ofrelationsover X is the set of formulae in the language of;
with free variables in the se¢ UX/, and is denoted aRp,. For any relation
R € Rp, we write

= RVi/Xi, vi/X]
if the formula in which each variable € X; is substituted by;(x), each

X € X/ is substituted bw{(x'), and each predicate and function symbol is
interpreted oveb), is logically true.

pi C X is a set ofparameters.e., variables whose values do not change
during execution

x}” C X; is a (possibly empty) ordered sequencéngiut variables

xPUt C X; is a (possibly empty) ordered sequencewofput variables

Qs a finite set otontrol states

I C Qis a non-empty set ahitial states

F C Qis a (possibly empty) set dinal states

24

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

e E C Qis a (possibly empty) set @frror states

e Ais a set oftransition rulesof the form:
R
a—q

whereq,q € QandR € T, w..up,

We require that, for all transition rule};i q,...,q B, g with g andd

as the source and destination states, respectively, favap { € {1,...,n}
it is the case thaR, = R; is valid (a transition rule does not subsume
another).

Additionally, for each transition relatioR occurring in4, the following
implication is assumed to be valid:

k
R= A A p=¢

i=1pepi

. -G(R
Moreover, we assume a transition I‘(ﬂé& (e to some error staig: € E,

for each transition rulg R q.

A configurationof an NTSSis a tuple(q, v, ..., Vk), whereq € Qs a control state
andv; : X; — Dy are interpretations of the state variables. A configurattbose
control state is front (F) is called an error (final) configuration, respectively. A
configuration(q/, v}, ...,v;) is animmediate successof (q,v1,...,Vk), denoted
as

(Q,V1,---,Vk) = (d,V],.--, V)

if and only if Shas a transition rulg R q, whereRe Tp,,_p, and

’: R[\)l/xL...,Vk/xkavél_/xiu" 7V|/(/X|2]

Given two control stateg,q € Q, a runp of A from g to §is a finite sequence of
configurations

P:CL=Cr=...Cny

whereci = (q,V1,...,Vk) andcm = (d,V,...,v;) for some interpretations, . .., v
andv/,...,v,. A run where the endpoint is not specified is assumed to betmfin
Letc=(q,vs,...,Vk) be an arbitrary configuration of an NTSand letc =

¢ =(q,v},...,v) andc=c" = (d",v],...,vy):

25

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

e Sis said to becontrol deterministidffy g = g, independently of the choice
of ¢, andc”.

e Sis said to bedata deterministidff v{ = v/, for alli € {1,...,k}, indepen-
dently of the choice of,c’ andc”.

e Sis said to badeterministidff it is both control and data deterministic, and
non-deterministiotherwise.

LetS= ({DiH_ 1, (X HC 1 {PHC 1, (XM HC L P HC 4, Q.1 F,E, A) be an NTS,
and letd(X) be a formula in the language @, »p, denotingnitial conditions
A configuration(q,v1,...,Vk) such thag € | and= ©[v1/Xy,...,Vk/X] is called
a O-initial configuration The following define theerification problemsve con-
sider for NTS.

Definition 1 (SAFETY) S is said to beafewith respect t® if and only if there is
no run starting in a®@-initial configuration, and ending in an error configuration

Definition 2 (TERMINATION) S is said toterminatewith respect ta®@ if and
only if each run starting in &@-initial configuration eventually reaches a final
configuration.

2.1 Basic NTS

A basic NTSBNTS) is an NTS over purely numeric domains. We distinguish
between booleais, integerZ and realR domains. The domain theory is in this
case the first order arithmetic of addition and multiplioati.e.,(D, <,0,1,+,),
whereD € {Z,R} and<, 0, 1,+ and- are interpreted as usual. For booleans we
write false true, or andandinstead of 01,4+ and-, respectively.

Notice that the domain of variables plays an important noldné semantics of
the transition relation. For instance, the relatiocn8 A X +8 = x s satisfiable on
Z but unsatisfiable o, whereas 2x-x =y-y s satisfiable ofR but unsatisfiable
onZ.

2.1.1 A Classification of BNTS (skip on first reading)

As shown by Minsky, the class of single-domain BNTS wilhy € {N,Z}, X; =
{x1,%2} and transition rules of one of the forms, for 1,2:

IM. Minsky. Computation: Finite and Infinite Machines. PieatHall, 1967.

26

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

X=x+1 ;g
—— d (increment)

/—xi—1
q AR g (decrement)
q =% o (zerotest)
has equivalent (Turing-complete) verification problemshesclass of BNTS us-
ing unrestricted first-order transition rules. On the otha&nd, using only incre-
ment, decrement and zero tests results in complex and hartbigrstand system
descriptions (as one needs a great number of control statbsyefore it seems
reasonable to identify expressive subfragments of thedndgr arithmetic and
classify BNTS according to the syntax of their transitioresul

Definition 3 (DIFFERENCE BOUNDS) A formula@(X) is adifference bounds
constraintif it is equivalent to a finite conjunction of atomic propaits of the
form x—y < awhere xy € X and ac Z.

Let f(]}g'b(x, X’) denote the class of difference bound relations over thelks in
X. ABNTS using only difference bounds transition relationsalied adifference
bounds (B)NTS

Definition 4 (OCTAGONS) A formula@(X) is an octagonal constrainf it is
equivalent to a finite conjunction of atomic propositionghed form+x+y < a,
2x < b, or—2x < c, where ab,ce Z and xy € X.

The class of octagonal relations over the variable$ is denoted byR (X, X").
A BNTS using only octagonal transition relations is callecbatagonal (B)NTS

Definition 5 (POLYHEDRA) A formula@(X) is apolyhedronif it is equivalent
to a finite conjunction of atomic propositions of the fo{r{i‘;la;xi +b > 0where
X1,...,Xp € X and a,...,an,b e Z.

The class of polyhedral relations over the variables is denoted byg,”°Y (X, X').
A BNTS using only polyhedral transition relations is calledadyhedral (B)NTS

Definition 6 (PRESBURGER) A formula@(X) is a Presburgeformula if it is

equivalent to a conjunction of a polyhedron with a finite cawjiion of atomic
propositions of the form £ 31 ; aixi +b where X, ...,x, € X, a,...,an,b,c€Z

and | denotes integer division. A Presburger formula is intetpdeonly over
(N,<,0,1,+,) and(Z,<,0,1,+,).

27

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

The class of Presburger relations over the variabl¥sisdenoted byg,” (X, X").
A BNTS using only Presburger transition relations is call&tesburger (B)NTS

We have the following hierarcRywhich reflects the expressive power of dif-
ferent subfragments of the first-order arithmetic.

Km()jb Q Rﬂ)())ct g R]})E)Oly g REE)resb

The last inclusion concerns only the case{bf Z} domains. Also, when inter-
preted ovelN or Z, all classes of BNTS defined above have equivalent (Turing-
complete) decision problems (safety and termination).

2.2 Array NTS

Let D be a base domain, in our case, onéBofZ or R. For the time being, we
consider only one-dimensional arrays of purely numeriesy hearray domain
of D is the set

Ap={a:[0..N-1]]—-D|NeN,}

The alphabet of the theoryz, consists of the combined alphabeffD) and the
following three function symbols:

e size: Ap — N4, sizda) =Nif a: [0,...,N—1] — D for someN € N,

e read : 4p x N, — D, read(a,i) =a(i) if 1 <i < sizga), and undefined
otherwise.

e write : 4p x N x DD — A4p, write(a,i,v) = afi «+ V] if 1 <i < sizda), and
undefined otherwise.

Note that, since an array is a function, the theory of arraysot a first-order
theory stricto sensu. For this reason, we do not allow (s@vder) quantification
over array variables for the time being.

Given a multiple array assignment

dlir,....i =[e1,...,&
its effect is as if the basic assignments were performeddefght, formally:
write(write(write(. .. (write(a,i,e1))...),Ik-1,6-1), 1k, &)

An array NTS(ANTS) is an NTS over three kinds of domains:

2This hierarchy is not just purely syntactic. Forinstancey <0 A x—z<1 A 2x—y—z<1
is still a difference bounds constraint, equivalenktey < 0 A x—z < 1, although the syntax is
that of a polyhedron.

28

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

¢ N is theindex domainThe set of index variables is denotedlby

.....

The transition rules oB are of the form

R
qa—q
whereR € Iy y pyw.. Dy w Ap .., - We formally restrict the occurrences of un-

primed array variablea to read (ead(a,i)) and write (vrite(a,i,t)) functions,
and primed array variables to atomic propositions of thenfal = write(a, i, t).
If Ttis an atomic proposition containing an array read or wrig¢ Gl(1) = 1 <
i A1 <sizda) i.e., we explicitly represent array out-of-bounds errors.

2.3 Hierarchical NTS

A hierarchical NTSHNTS) S, over the domain®; _ is defined using a col-
lectionS,, ..., S, of basic NTS oveid; _k, with a designatedhainNTS, denoted
byme {1,...,n}. Let

<{DJ}] l’{XH}j 17{pIJ}J X" }j l?{XOUI}] 1, Qi i, R, B, A)

foralli e {1,2,...,n}, such that, for any,/ € {1,2,...,n}, j # ¢ impliesQ; N
Q¢ = 0. We have then

{Dl}j 17{UX|1}, 17{UP|1}J 1. { j 2 Dt Ij(17UQ1,|m,Fm7UE17UA|

Let X7 = N4 X ; denote the sets aflobal (common) variables, ang' ; = X; ;\
Xg denote the sets dbcal variables, for allj € {1,... ,k}. We explicitly require

that for anyi # i’ XI' NX) ;= 0 i.e., local variables of component NTS are
pairwise disjoint.
The transition rules of, are of two kinds:

e q R d (internal ruleg

whereq,q € Q;, for somel € {1,...,n}, andR € Tp, .. up,

29

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

°«q > g (call-return rules)

whereq,q € Q;, for somei € {1,...,n}, andt, are ordered sequences of
terms over the variables ¢, such thaf|t/[| = |x},[| and[ly’,[| = Hx?‘i}” for
somej € {1,...,n} and for allf € {1,... k}.

Given base domairi8; i and the set of basic NTES}! ; above, thdrame
domainis defined as follows:

n

I o= (0 x (X1 = D) x.ox (X = Dy))

- et

Given arelatiorR € Rp,, . p,, interpretations of global variablgs, y; : ng — Dj,
forall j € {1,...,k}, and framegp= (8,v1,...,Vk), ¢ = (&,V],...,V}), we write
(I, o, @) = Rfor the following:

): R[yl/xf?‘"7yk/xkg7V1/XZ=_7"'7V|(/X||7y’1/xg€[7'-->Vk/XgIaVéL/X|§L7' --vvll(/le]

wherel" = {y1,...,yk} andl" = {y},...,\}.
Thestackdomain is the set of sequences of frames

N N

.....

to the empty sequence.
A configuration of a HNTS is a tuplég, yi, - . ., Yk, 0), where
e g < UL ,Qis the current control state

o V! Xig — I are interpretations of global variables, foriadl {1,... k}

3For the sake of simplicity, we introduce transition ruleattobannot be written using first-
order logic. The semantics however can be fitted into logfmaey a stack domain and push/pop
functions.

30

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

The immediate successor relation is defined as follows. We ha
(YL, Yk 0) = (4, V2, Vi, O)
if and only if either one of the following holds:
o R g € Aand(l',top(o),l",top(d’)) ER
ST(CIRRTARYS

°«d=q » q” € A for somei € {1,...,n},d €1,y =Y, for

all ¢ € {1,... .k} ando’ = pusHa, @), where@ = (3,v1,...,Vk) is a stack
frame such that:

(T.top(0).I",@) = /\ /\X ¢ =tmy

(=1m=1

Wherexijrjé = (X106, X2, Xpy) @ndty = (tyo,toy,...tp) are ordered se-
guences, with equal number of elements.

Si(te, b, YooY .
o 5= q ItV o A for somed €{1,....,n},qeFj,y =Y, for

all ¢ € {1,...,k}, such thatop(c) = (3,v1,...,Vk). Letd” = pop(o) and
top(c”) = (8",vY,...,vy). Thenp= (&",V,...,v) is a frame such that:

(' ,top(o = /\ /\ X =x
t= 1X€Xi|7£\y€
and
(T',top(o F/\ /\me—y,mé
(=1m=1

wherex' = (X1, Xz, -Xp.e) @andy) = (Y 1,55+ --Yy) are ordered se-
quences, with equal number of elements. Finallyglet pusipop(c”), @).

2.4 Parallel NTS

A parallel NTSPNTS S[M] is defined as a collection of (possibly hierarchic)
NTSS,..., S, over the domainBy,..., Dy, together with anultiset of instances
M:{1,...,n} — N. A configuration of§[M] is a tuple

C= <C1’1...C17M(1), 0271...C2’M(2), R Cn,]_...Cn7M(n)>

31

CHAPTER 2. NUMERICAL TRANSITION SYSTEMS

in ~
X T -
X X] X<j)ut X
| 7
» My]
S callsS; S§j returns taS

whereg; 1, ..., G v (i) are configurations o, for alli € {1,...,n}.

Given a formula® in the language offp, ... wn,, a ©-initial configuration of
SM] is a configuration whose ; components are a@-initial configurations of
S, foralli € {1,...,n}. Afinal configuration is a configuration whosg compo-
nents are all final configurations §f, for alli € {1,...,n}. An error configuration
is a configuration such that at least ang component is an error configuration of
S, for somei € {1,...,n}.

The transition relation is defined as follows. We h&ve- C' if and only if C’
is same a€ except for exactly one component {1,...,n}, j € {1,...,M(i)},
for which we haveS; j = C{J, where=j is the transition relation d§.

In a parallel NTS, all thread instances have access to a famedevariable
tid. Globally,tid is defined as a partial functidid (i, j) = S,_M(¢) + j — 1, if
1<i<nand 1< j < M(i), and undefined otherwise. Intuitivelyd (i, j) is the
local value of the variabléd for the instancéi, j) of the parallel system.

32

