Notions of Automata Theory



Automata on Finite Words

A non-deterministic finite automaton (NFA) over ¥ is a tuple
A= (S 1,T, F) where:

e S is a finite set of states,
e /] C Sis a set of initial states,

o I'C S x> xS isa transition relation,

o ['C Sis aset of final states.

We denote T'(s,a) ={s' € S| (s,a,s") € T}. When T is clear from the

context we denote (s,a,s’) € T by s = 5.



Determinism and Completeness

Definition 1 An automaton A = (S,I,T,F) is deterministic (DFA) iff
|I| =1 and, for each s € S and for each o € X, |T'(s, )| < 1.

If A is deterministic we write T'(s, ) = ¢’ instead of T'(s, ) = {s'}.

Definition 2 An automaton A = (S,I, T, F) is complete iff for each
s € S and for each a € X, |T'(s, )| > 1.



Runs and Acceptance Conditions

Given a finite word w € X*, w = a1 ... @y, a 7un of A over w is a finite
’ %

sequence of states si,s92,...,5Sp,Spa1 such that s; € I and s; SN s;+1 for
all 1 <1 <n.

. w
A run over w between s; and s; is denoted as s; — s;.

The run is said to be accepting iff s, € F. If A has an accepting run

over w, then we say that A accepts w.
The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S C X* is recognizable if there exists an automaton A such

that S = L(A).



Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.



Determinization

Theorem 1 For every NFA A there exists a DFA Ay such that
L(A) = L(Ag).

Let Ay = (2°,{I},Ty,{G C S| GNF # (}), where

(S1,,82) €Ty — Sy ={s"|3dse S . (s,,5) €T}

This definition is known as subset construction



On the Exponential Blowup of Complementation

Theorem 2 For everyn € N, n > 1, there exists an automaton A, with
size(A) = n + 1 such that no deterministic automaton with less than 2"

states recognizes the complement of L(A).

Let ¥ = {a,b} and L = {uav | u,v € ¥X*,|v| =n — 1}.

There exists a NFA with exactly n + 1 states which recognizes L.

Suppose that B = (S,{so},T, F), is a (complete) DFA with |S| < 2" that
accepts X* \ L.



On the Exponential Blowup of Complementation

[{w € ¥* | lw| =n}| =2" and | S| < 2" (by the pigeonhole principle)

uav ubvo
= Juavy, ubvsy . luavi| = |ubves| =n and s € S . sp —— s and 59 —— s

Let s; be the (unique) state of B such that s — s;.
Since |uavi| = n, then uaviu € L = uaviu € L(B), i.e. s is not accepting.

On the other hand, ubvou ¢ L = ubvou € L(B), i.e. s is accepting,

contradiction.



Completion

Lemma 1 For every NFA A there exists a complete NFA A. such that
L(A) = L(A.).

Let A, = (SU{c},I,T., F), where o € S is a new sink state. The

transition relation 7, is defined as:
Vse SVaeX . (s,a,0) €T, — Vs'eS.(s,a,8)&T

and Va € X . (0,a,0) € T,.



Closure Properties

Theorem 3 Let Ay = (S1, 11,11, F1) and Ay = (So, Is,T5, F5) be two
NFA. There exists automata Ay, A, and An that recognize the languages
YN\ L(AL), L(A1) U L(A2), and L(A1) N L(A2) respectivelly.

Let A" = (8", I',T', F') be the complete deterministic automaton such
that £(A1) = L(A"), and A = (S", ', T", 5"\ I").

Let A, = <Sl U Sy, I1 Uy, Ty UTy, Fy U F2>.

Let Am = <Sl X 52,11 X IQ,Tm,Fl X F2> where:

((s1,t1), a, (s2,t9)) € Th <= (s1,a,82) € T7 and (t1, a,ta) € Th



Decidability

Given automata A and B:

¢ Membership Given w € ¥*, w € L(A) ?
07
e Equality £L(A) =L(B) ?

e Emptiness £L(A)

e Infinity |L(A)| < 0 7
e Universality £(A) = ¥* 7

Theorem 4 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.



Automata on Infinite Words



Definition of Buchi Automata

Let ¥ = {a,b,...} be a finite alphabet.

A non-deterministic Biichi automaton (NBA) over X is a tuple
A= (S 1,T, F), where:

e S is a finite set of states,
e | C S is a set of initial states,
o I'C S x> xS isa transition relation,

o ['C S is aset of final states.



Acceptance Condition

A run of a Buchi automaton is defined over an infinite word w : a1 . . .

as an infinite sequence of states m : spsiss ... such that:
e sy €] and

o (Si,iy1,8.41) €T, for all i € N.

inf(m) = {s | s appears infinitely often on m}

Run 7 of A is said to be accepting iff inf(7) N EF £ ().

The language of A, denoted L(A), is the set of all words accepted by A.

A language L C % is recognizable (or, equivalently rational) if there exists
a Biichi automaton A such that L = L(A).



Examples

Let ¥ = {0,1}. Define Biichi automata for the following languages:
1. L={a € ¥ | 0 occurs in « exactly once}

2. L ={a e X% | after each 0 in « there is 1}

3. L ={a € X% | a contains finitely many 1’s}
4. L= (01)*3¥

5. L ={a € X¥ | 0 occurs on all even positions in a}



Closure Properties

Closure under union is like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Biichi automata is a complex

result.

Deterministic BA are not closed under complement



Closure under Intersection

Let A = <Sl,11,T1,F1> and A, = <SQ,IQ,T2,F2>

Build An = (S,1,T, F):
e S=57 x5y x{1,2, 3},
o [ =1 x Iy x {1},
e the definition of 7' is the following:
( NeT;,i=1,2and s1 ¢ F}
( NeT,i=1,2and 51 € F}
c T iff (si,a,s,) €T;,i=1,2 and s| € F
( NeT;,i=1,2and s] € Fy
(siya,s7) €Ty i=1,2
o =51 x5y x{3}



The Emptiness Problem

Theorem 5 Given a Bichi automaton A, L(A) # 0 iff there exist
u,v € X%, |ul, || <A, such that uwv® € L(A).

In practical terms, A is non-empty iff there exists a state s which is

reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Biichi automata?



Deterministic Buchi Automata

w-languages recognized by NBA D w-languages recognized by DBA

Q: Why classical subset construction does not work for Biichi automata?
Let A= (S,I,T,F) and Ag = (2°, {1}, T;,{Q | QN F # 0}).
Let upujug ... € L(A) be an infinite word. In A, this gives:

I35 00, 3.,
| 2

where each (); N F'. However this does not necessarily correspond to an

accepting path in A!



Deterministic Buchi Automata

Let W C %*. Define W = {a € 3% | a(0,n) € W for infinitely many n}

Theorem 6 A language L C X% is recognizable by a deterministic Biichi

%
automaton iff there exists a rational language W C X* such that L = W.

If L =L(A) then W = L(A’) where A’ is the DFA with the same

definition as A, and with the finite acceptance condition.



Deterministic Buchi Automata

Theorem 7 There exists a Buchi recognizable language that can be

recognized by no deterministic Bucht automaton.

Y ={a,b} and L ={a € X% | #4(a) < oo} = X*b~.
—

Suppose L = W for some W C X%,

W“elL=0b'ecW

b"tab” € L = b"ab™? ¢ W

H
b"tab™a ... € W = L, contradiction.



Deterministic BA are not closed under complement

Theorem 8 There exists a DBA A such that no DBA recognizes the
language 3% \ L(A).

Y ={a,b} and L ={a € X¥ | #,(a) < oo} = X*b~.
Let V' = ¥*a. There exists a DFA A such that L(A) = V.
There exists a deterministic Biichi automaton B such that £(A) = %

But 3¢\ V = L which cannot be recognized by any DBA.



Complementation of non-deterministic BA

e Languages recognized by non-deterministic BA are closed under

complement
e Original proof by Biichi using Ramsey Theorem
e Optimal 20("logn) complexity by Safra Algorithm

e Lower bound of n!



LTL Model Checking



System verification using LTL

e Let K be a model of a reactive system (finite computations can be

turned into infinite ones by repeating the last state infinitely often)

e Given an LTL formula ¢ over a set of atomic propositions P,
specifying all bad behaviors, we build a Biichi automaton A, that

accepts all sequences over 27 satisfying .

e Check whether £L(A,) N L(K) = (. In case it is not, we obtain a

counterexample.

e Alternatively, if ¢ specifies all good behaviors, we check

L(A-,) N LK) = 0.



Generalized Buchi Automata

Let ¥ = {a,b,...} be a finite alphabet.

A generalized Biichi automaton (GBA) over ¥ is A = (S,I,T,F), where:
e S is a finite set of states,
e /| C S is a set of initial states,
o I'C S x> xS isa transition relation,

o F={F,...,F,} C2%is aset of sets of final states.

A run 7 of a GBA is said to be accepting iff, for all 1 <7 < k, we have

inf(7) N F; # ()



GBA and BA are equivalent

Let A= (S,I,T,F), where F = {Fy,..., Fy}.

Build A’ = (S, I, T', F'):
o S'=5x{1,... .k},
o I'=1x{1},
o ((s,i),a,(t, 7)) € T"iff (s,t) € T and:
_j=iifs¢F,
— j=(i mod k) +1if s € F;.

o F,:F1><{1}.



The idea of the construction

Let K = (5, sg,—, L) be a Kripke structure over a set of atomic
propositions P, m : N — § be an infinite path through K, and ¢ be an
LTL formula.

To determine whether K, 7 = ¢, we label m with sets of subformulae of ¢

in a way that is compatible with LTL semantics.

Then K, = ¢ if such a labeling exists



Negation Normal Form

e Negation occurs only on atomic propositions

~(pUY) = R~

(PRY) = —pU—p
-O0p = O
O = 0=

e Example

—0p V O(=(aldb A Oc)) = O=p V O(maR-b V O=c)



Closure

Let ¢ be an LTL formula written in negation normal form.

The closure of ¢ is the set Cl(p) € 26UETL).

® C Cl((p)

e Oy € Cl(p) = ¢ € Cl(p)
o Y1 ey € Cl(p) = Y1,y € Cl(p), for all e € {A,V,U,R}.

Example 1 Cl(Op) = Cl(TUp) = {p,p, T}O

Q: What is the size of the closure relative to the size of ¢ 7



Labeling rules

Given a path 7 : N — 27 in a Kripke structure K = (S, sg, —, L) and ¢,

we define the labeling 7 : N — 2¢1#®) ag follows:

o for pec P, if p e 7(i) then p € w(i), and if —p € 7(¢) then p & 7(7)

o if Y1 Ao € 7(4) then ¢ € 7(¢) and 19 € 7(4)

o if Y1 Vo € 7(7) then ¥ € 7(¢) or 19 € 7(1)



Labeling rules

Uy = PV (oA O(pUr))
YRy = YA (pVO(@RY))

o if Oy € 7(i) then ¢y € 7(2 + 1)

o if y1U1py € T(i) then either ¥y € 7(i), or Y1 € 7(7) and
ViUYy € T(i 4+ 1)

o if YyRipy € 7(i) then ¥y € 7(¢) and either ¥; € 7(¢) or
1Ry € T(i + 1)



Interpreting labelings

A sequence 7 satisfies a formula ¢ if one can find a labeling 7 satisfying:

e the labeling rules above

e v c7(0), and

o if y1Urpo € 7(i), then for some j > i, 1o € 7(j) (the eventuality

condition)



Example

p p p

q

pUq pUq piq  plUg

p p p q
OUq) OpUq) O(pUq)



Building the GBA A, = (S,[,T,F)

The automaton A, is the set of labeling rules + the eventuality

condition(s) !
e ¥ = 27 is the alphabet
o S C 20U¥) guch that, for all s € S :
— 1 N2 €s= 1 €sand Yy €5
— Y1V €8S = Y1 €ESOr Ya €S
o [={seS|pes}
e (s,a,t) €T iff:
—forallpeP,pes=pe€a,and pEs=pé<a,

- OYes=vYet,
— 1UYy € s = Py € s or |11 € s and Y1l € 1]
— PRy € s = 19 € s and [1h1 € s or Y1 Ry € t]



Building the GBA A, = (S,[,T,F)

e for each eventuality ¢pUy € Cl(p), the transition relation ensures that

this will appear until the first occurrence of

e it is sufficient to ensure that, for each ¢ly € Cl(p), one goes
infinitely often either through a state in which this does not appear,
or through a state in which both ¢lf1) and 1) appear

o let o1UY, ... 0, UY, be the “until” subformulae of ¢

F=A{F,...,F,}, where:
F,={se S| ¢p;Up; € s and ¢; € s or ¢p;UY; & s}

for all 1 <17 <n.



Conclusion of the second part

e Model checking is a push-button verification technique
e The main limitation is the size of the system’s model
e Practical for hardware systems: boolean variables, finite-state models

e Difficult for software systems: integers, pointers, recursive data
structures

e There are several methods to fight state explosion:
— finite-state systems: partial-order reductions, symmetry reductions
— infinite-state systems: symbolic representations (automata,logic),

abstract interpretation, compositional techniques

e Verification in industry:

— hardware: Cadence, Synopsis, IBM, Intel, ...

— software: AbsInt, GrammaTech, Coverity, Polyspace, Monoidics, ...



