Scaling Dynamic Logic for Intermediate states

Boriss Shelajev joint work with Keiko Nakata and Tarmo Uustalu

Institute of Cybernetics at TUT

April 11, 2013

Introduction

Standard sequential program logics are insufficient for reasoning about nonterminating program runs

We extend a dynamic logic with new modalities to talk about resumptions, a pair of intermediate state and residual program

Expressions in DL

The logic consists of expressions of a two sorts

- programs $(\alpha, \beta, \gamma, ...)$
- 2 formulas $(\varphi, \psi, ...)$

Syntax of programs

We work with non-deterministic and parallel While language and extend it with a special *cont*_i statement

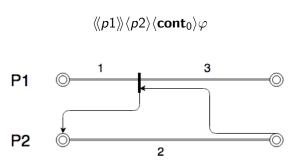
```
\begin{array}{c} \textit{Program $p :=$} \\ & \textit{x} := \textit{a} \\ & \textit{skip} \\ & \textit{p}; \textit{p}' \\ & \textit{p} \mid\mid \textit{p}' \\ & \textit{if $b$ then $p_t$ else $p_f$} \\ & \textit{while $b$ do $p$} \\ & \textit{cont}_i \end{array}
```

Syntax of formulas

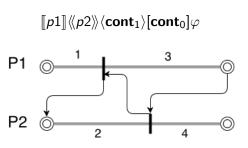
We introduce two new modalities for reasoning about resumptions

$$\begin{split} \varphi := & \\ & x = a \\ & \varphi \lor \psi \mid \varphi \land \psi \mid \varphi \rightarrow \psi \mid 0 \mid 1 \\ & \langle p \rangle \varphi \mid \llbracket p \rrbracket \varphi \mid \langle \langle p \rangle \rangle \varphi \mid \llbracket p \rrbracket \varphi \end{split}$$

Example



Example 2



Semantics

 $\langle S, \sigma \rangle \to_{cs} \langle \sigma' \rangle$: states that running S under continuation stack cs from initial state σ terminate in the final state σ'

 $\langle S,\sigma \rangle \Rightarrow_{cs} \langle S',\sigma' \rangle$: states that running S under continuation stack cs from initial state σ reaches an intermediate state σ with residual program S'

Natural semantics for While + cont

Natural semantics for intermediate states excl. final state

Final state natural semantics for parallelism

$$\frac{\langle S_{1},\sigma\rangle\Rightarrow_{cs}\langle S'_{1},\sigma'\rangle\quad\langle S'_{1}||S_{2},\sigma'\rangle\to_{cs}\langle\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle\to_{cs}\langle\sigma''\rangle} \ \ fpara1$$

$$\frac{\langle S_{2},\sigma\rangle\Rightarrow_{cs}\langle S'_{2},\sigma'\rangle\quad\langle S_{1}||S'_{2},\sigma'\rangle\to_{cs}\langle\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle\to_{cs}\langle\sigma''\rangle} \ \ fpara2$$

$$\frac{\langle S_{1},\sigma\rangle\to_{cs}\langle\sigma'\rangle\quad\langle S_{2},\sigma'\rangle\to_{cs}\langle\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle\to_{cs}\langle\sigma''\rangle} \ \ fpara3$$

$$\frac{\langle S_{2},\sigma\rangle\to_{cs}\langle\sigma'\rangle\quad\langle S_{1},\sigma'\rangle\to_{cs}\langle\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle\to_{cs}\langle\sigma''\rangle} \ \ fpara4$$

Intermediate state natural semantics for parallelism

$$\frac{\langle S_{1},\sigma\rangle \Rightarrow_{cs} \langle S'_{1},\sigma'\rangle \quad \langle S'_{1}||S_{2},\sigma'\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle} \quad \text{ipara1}$$

$$\frac{\langle S_{2},\sigma\rangle \Rightarrow_{cs} \langle S'_{2},\sigma'\rangle \quad \langle S_{1}||S'_{2},\sigma'\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle} \quad \text{ipara2}$$

$$\frac{\langle S_{1},\sigma\rangle \Rightarrow_{cs} \langle \sigma'\rangle \quad \langle S_{2},\sigma'\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle} \quad \text{ipara3}$$

$$\frac{\langle S_{2},\sigma\rangle \Rightarrow_{cs} \langle \sigma'\rangle \quad \langle S_{1},\sigma'\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle}{\langle S_{1}||S_{2},\sigma\rangle \Rightarrow_{cs} \langle S,\sigma''\rangle} \quad \text{ipara4}$$

Semantics for modalities

- $\bullet \ \sigma \models_{\mathit{cs}} \langle \mathit{S} \rangle \varphi \iff$ for some σ' s.t. $\mathit{S}, \sigma \to_{\mathit{cs}} \sigma'$ we have $\sigma' \models_{\mathit{cs}} \varphi$
- $\sigma \models_{cs} \langle \! \langle S \rangle \! \rangle \varphi \iff$ for some S', σ' s.t. $S, \sigma \Rightarrow_{cs} S', \sigma'$ we have $\sigma' \models_{S',cs} \varphi$
- $\bullet \ \sigma \models_{\mathsf{cs}} [\mathit{S}] \varphi \iff$ for all σ' s.t. $\mathit{S}, \sigma \to_{\mathsf{cs}} \sigma'$ we have $\sigma' \models_{\mathsf{cs}} \varphi$
- $\sigma \models_{cs} \llbracket S \rrbracket \varphi \iff$ for all S', σ' s.t. $S, \sigma \Rightarrow_{cs} S', \sigma'$ we have $\sigma' \models_{S':cs} \varphi$

Substitutions

$$\begin{aligned} & \operatorname{cont}_i[S/\operatorname{cont}_i] = S \\ & \operatorname{cont}_j[S/\operatorname{cont}_i] = \operatorname{cont}_j, \ i \neq j \\ & \times := a[S/\operatorname{cont}_i] = \times := a \\ & \operatorname{skip}[S/\operatorname{cont}_i] = \operatorname{skip} \\ & (S';S'')[S/\operatorname{cont}_i] = S'[S/\operatorname{cont}_i]; S''[S/\operatorname{cont}_i] \end{aligned}$$
 if b then S' else $S''[S/\operatorname{cont}_i] = \operatorname{if} b$ then $S'[S/\operatorname{cont}_i] = \operatorname{seth} S''[S/\operatorname{cont}_i] = \operatorname{seth} S''[S/\operatorname{cont}_i] + \operatorname{seth} S'[S/\operatorname{cont}_i] + \operatorname{seth} S'[S/$

where S^{up} replaces every occurrence of **cont**_i with **cont**_{i+1}.

Substitution

Substitution property

$$\sigma \models_{\mathit{cs}} \varphi[S/\mathit{cont}_i] \iff \sigma \models_{\mathit{cs}[i \mapsto S]} \varphi$$

where the notation $cs[i \mapsto S]$ replaces the i-th element in cs by S

Expressivity

$$[S] \langle \mathbf{cont}_0 \rangle \varphi$$
 - should converge

Property: $[S] \langle \mathbf{cont}_0 \rangle \varphi \Rightarrow \langle S \rangle \varphi$

$$\langle \langle S \rangle \rangle [\mathbf{cont}_0] \varphi - "lucky" intermediate state$$

Property: $[S]\varphi \Rightarrow \langle \langle S \rangle\rangle[\mathbf{cont}_0]\varphi$

Axioms

Axioms ctd

Axioms for parallelism

$$\langle S_{1}||S_{2}\rangle\varphi\iff\langle S_{1}\rangle\langle S_{2}\rangle\varphi\vee\langle\langle S_{1}\rangle\rangle\langle\mathbf{cont}_{0}||S_{2}^{up}\rangle\varphi^{up}\vee\\ \langle S_{2}\rangle\langle S_{1}\rangle\varphi\vee\langle\langle S_{2}\rangle\rangle\langle\mathbf{cont}_{0}||S_{1}^{up}\rangle\varphi^{up} \\ [S_{1}||S_{2}]\varphi\iff[S_{1}][S_{2}]\varphi\wedge[S_{1}][\mathbf{cont}_{0}||S_{2}^{up}]\varphi^{up}\wedge\\ [S_{2}][S_{1}]\varphi\wedge[S_{2}][\mathbf{cont}_{0}||S_{1}^{up}]\varphi^{up} \\ \langle\!\langle S_{1}||S_{2}\rangle\!\rangle\varphi\iff\langle S_{1}\rangle\langle\langle S_{2}\rangle\!\rangle\varphi\vee\langle\langle S_{1}\rangle\rangle\langle\langle\mathbf{cont}_{0}||S_{2}^{up}\rangle\!\rangle\varphi^{up}\vee\\ \langle S_{2}\rangle\langle\langle S_{1}\rangle\!\rangle\varphi\vee\langle\langle S_{2}\rangle\rangle\langle\langle\mathbf{cont}_{0}||S_{1}^{up}\rangle\!\rangle\varphi^{up} \\ [S_{1}||S_{2}]\![\varphi\iff[S_{1}]\![S_{2}]\![\varphi\wedge[S_{1}]\![\mathbf{cont}_{0}||S_{1}^{up}]\![\varphi^{up}\wedge\\ [S_{2}]\![S_{1}]\![\varphi\wedge[S_{2}]\![\mathbf{cont}_{0}||S_{1}^{up}]\![\varphi^{up}\rangle \\$$

Related work

- A Sequent Calculus for First-Order Dynamic Logic with Trace Modalities, Bernhard Beckert, Steffen Schlager, Automated Reasoning, 2001
- Dynamic Logic with Trace Semantics, Bernhard Beckert,
 Daniel Bruns, Automated Deduction CADE-24, 2013