
    TITLE: From simple combinatorial statements with difficult mathematical proofs to hard ins
tances of SAT

   ABSTRACT: In this presentation I will present work in progress on the proof complexity of a
 class of unsatisfiable propositional formulas denoted by $Kneser_{n,k}$. These formulas (in n
 variables) are parameterized by a constant integer $k\geq 1$ and generalize the pigeonhole pr
inciple (obtained when $k=1$). They encode a combinatorial principle known as Kneser-Lovasz th
eorem (conjectured by Kneser, later proved by Lovasz using techniques from algebraic topology)
Our results are as follows:

- we prove exponential lower bounds for the resolution complexity of any family $Kneser_{n,k}$
. A standard connection yields lower bounds for the complexity of DPLL algorithms as well. Suc
h results hold in fact for a stronger version of the Kneser-Lovasz theorem proved by Schrijver
.

- similarly, an exponential lower bounds holds for the complexity of so-called bounded-depth F
rege proofs.

On the other hand

- Formulas $Kneser_{n,k}$ with k=2 have polynomial size Frege proofs.
- Formulas $Kneser_{n,k}$ with k=3 have polynomial size extended Frege proofs.

- for $k\geq 4$ for which no purely combinatorial proof of the Kneser Lovasz conjecture is kno
wn we show that the corresponding formula have polynomial size proofs in a proof system at the
 second level of Krajicek’s hierarchy of implicit extended Frege proofs.

I will also discuss the prospects of (and practical issues related to) using such formulas as 
benchmarks for SAT solvers, as well as related open issues.
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