TITLE: From sinpl e conbinatorial statenents with difficult mathematical proofs to hard ins
tances of SAT

ABSTRACT: In this presentation | will present work in progress on the proof conplexity of a
cl ass of unsatisfiable propositional formulas denoted by $Kneser_{n, k}$. These fornulas (in n
vari abl es) are paraneterized by a constant integer $k\geq 1% and generalize the pigeonhole pr
i nci pl e (obtai ned when $k=1$). They encode a conbinatorial principle known as Kneser-Lovasz th
eorem (conjectured by Kneser, |ater proved by Lovasz using techniques from al gebrai c topol ogy)
Qur results are as foll ows:

- we prove exponential |ower bounds for the resolution conplexity of any famly $Kneser {n,k}$
A standard connection yields | ower bounds for the conplexity of DPLL algorithnms as well. Suc
h results hold in fact for a stronger version of the Kneser-Lovasz theorem proved by Schrijver

- simlarly, an exponential |ower bounds holds for the complexity of so-called bounded-depth F
rege proofs.

On the ot her hand

- Fornmul as $Kneser _{n,k}$ with

k have pol ynom al size Frege proofs.
- Formul as $Kneser _{n,k}$ with k

=2

=3 have pol ynom al size extended Frege proofs.

- for $k\geq 4% for which no purely conbinatorial proof of the Kneser Lovasz conjecture is kno
wn we show that the correspondi ng fornul a have pol ynoni al size proofs in a proof systemat the
second | evel of Krajicek’s hierarchy of inmplicit extended Frege proofs.

I will also discuss the prospects of (and practical issues related to) using such formulas as
benchnmarks for SAT solvers, as well as rel ated open issues.
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