Linear Temporal Logic



Safety vs. Liveness

e Safety : something bad never happens

A counterexample is an finite execution leading to something bad

happening (e.g. an assertion violation).

e Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good

happens (e.g. the program does not terminate).



Verification of Reactive Systems

e (lassical verification a la Floyd-Hoare considered three problems:

— Partial Correctness :
{p} P {4y} iff for any s = ¢, if P terminates on s, then P(s) = 1

— Total Correctness :
{p} P {4y} iff for any s = ¢, P terminates on s and P(s) = 1

— Termination :

P terminates on s

e Need to reason about infinite computations :
— systems that are in continuous interaction with their environment
— servers, control systems, etc.

— e.g. “every request is eventually answered”



Reasoning about infinite sequences of states

e Linear Temporal Logic is interpreted on infinite sequences of states

e LLach state in the sequence gives an interpretation to the atomic

propositions

e Temporal operators indicate in which states a formula should be

interpreted

FExample 1 Consider the sequence of states:

{p,a} {-p,~q} {—-p,q} {p,q})*

Starting from position 2, q holds forever. O



Kripke Structures

Let P ={p,q,r,...} be a finite alphabet of atomic propositions.

A Kripke structure is a tuple K = (S, sg, —, L) where:

e S is a set of states,
e sop € 5 a designated initial state,

o — : S x Sisa transition relation,

o L:S — 27 is a labeling function.



Paths in Kripke Structures

A path in K is an infinite sequence m : sg, S1,S9 ... such that, for all

) Z O, we have S; — Si4+1-

By 7(i) we denote the i-th state on the path.

By m; we denote the suffix s;,s;41,8i19....

inf(w) = {s € S | s appears infinitely often on 7}

If S is finite and 7 is infinite, then inf(7) # 0.



Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:
e atomic proposition symbols p,q,r, ...,
e boolean connectives -, V, A, —, <>,

e temporal connectives (), 0,0, U, 'R.

The set of LTL formulae is defined inductively, as follows:
e any atomic proposition is a formula,

e if ¢ and ¢ are formulae, then —¢ and p e ¢, for @ € {V, A\, —, <} are

also formulae.

e if p and vy are formulae, then (), Oy, Cw, WU and RY are

formulae,

e nothing else is a formula.



Temporal Operators

e () isread at the next time (in the next state)

e 0 is read always in the future (in all future states)

e < is read eventually (in some future state)

e [/ is read until

e R is read releases



Linear Temporal Logic: Semantics

K,rmEp < p € L(m(0))

KrtE-yp < K, 7 ¢
KnEeANY <= K,m=pand K,m =1
KrkEQp <— K,m =
K,m = @oUp <= there exists k € N such that K, 7 = ¢

and K,m, Epforall0<i<k

Derived meanings:
KrtEOp <— K,m=TUyp

K,mEOp < K,mE -0
K,mE Ry <+— K,mE-(~oU)



Examples

e p holds throughout the execution of the system (p is invariant) : Op
e whenever p holds, ¢ is bound to hold in the future : O(p — <q)

e p holds infinitely often : OCp

e p holds forever starting from a certain point in the future : <Op

e O(p — (O(—qglr)) holds in all sequences such that if p is true in a
state, then g remains false from the next state and until the first state

where r is true, which must occur.

e pRq : q is true unless this obligation is released by p being true in a

previous state.



LTL = FOL

Theorem 1 LTL and FOL on infinite words have the same expressive

POWer.

From LTL to FOL:

Tr(g) = Pq(?)
Tr(-p) = —T'r(p)
Tr(pA) = Tr(e) NTr(y)
Tr(Qy) = Tr(p)lt +1/¢
Tr(eUy) = Fz. Tr()lz/t]AVy .y <z—Tr(e)ly/t]

The direction from FOL to LTL is done using star-free sets.



LTL < S1S

Definition 1 A language L C X% is saitd to be non-counting iff:

Ino¥n > noVu,v € IV e X¥ . w"B e L — w"ge L

Example 2 0*1% s non-counting. Let ng = 2. We have three cases:
1. u,v € 0* and € 0*1% :

VYn>ng . uv"B el

2. ue 0", vel'l" and g € 1¥ :

Vn>ng . uw"B &L

3. ue0*1*, vel” and B € 1¥ :

VYn>ng . uv"B el



LTL < S1S

Conversely, a language L C X is said to be counting iff:

Vnoan > ngJu,v € 3B € ¥ . (wv"B & LAuww" T8 € L)V(uv™B € LAuwv™ B & L)

Example 3 (00)*1%“ is counting.

Given ng take the next even number n > ng, u =€, v =0 and 8 = 1%.
Then uv™B € (00)*1¥ and wv™ ™13 ¢ (00)*1¥. O



LTL < S1S

Proposition 1 FEach LTL-definable w-language is non-counting.

IngVn > noVu,v € VG € ¥ . w"f E ¢ <~ w3 =

By induction on the structure of ¢ :
e © =a : choose ng = 1.
e ¢ = —) : choose the same ng as for .

e © =11 ANy : let ny for 11 and neo for 9, and choose

ng = max(ni, ng).



LTL < S1S

e o= ) :let n; for ¢ and choose ng = n; + 1.
— we show Vn > ng . (wv"8)1 E ¢ = (uw"™13); E o

— case u # e, i.e. u=au :

(au'v"B)1 E ¢ = V"B Y =

TRILaRS’ = <— (au'v"B)1 E

— case u =€, v =av :

(at)"B)1 E Y <= (@)Y =

V(@)"BEY = ((@)"Bh v



LTL < S1S

o © = 11UYs : let ny for Y1 and ng for 15, and choose

ng = max(ni,ng) + 1.

— we show Vn > ng . wv"B = Y1ildps = w13 = il

— we have (uv"f3); =12 and Vi < j . (uwv"f3); = 1 for some j > 0
— case j < |ul: (wv™t1B); E o and Vi < j . (w1 B); = 4y

— case J > |ul: let j/ = j + ||

k(W B) ;= (W B); = o
« for all |ul + |v] <@ <j+v| . (w"B); = (w™B);—py = Y1
x for all i < |ul + [v] . (w)v"B); = 1 < (uv)v™"18); =

— the direction < is left to the reader.

Theorem 2 LTL is strictly less expressive than S18.



LTL Model Checking



System verification using LTL

e Let K be a model of a reactive system (finite computations can be

turned into infinite ones by repeating the last state infinitely often)

e Given an LTL formula ¢ over a set of atomic propositions P,
specifying all bad behaviors, we build a Buchi automaton A, that

accepts all sequences over 27 satisfying o.

Q: Since LTL C S1S, this automaton can be built, so why bother?

e Check whether £L(A,) N L(K) = (. In case it is not, we obtain a

counterexample.



Generalized Buchi Automata

Let % = {a,b,...} be a finite alphabet.

A generalized Buchi automaton (GBA) over ¥ is A = (5,1,T,F), where:
e S is a finite set of states,
e /| C S is a set of initial states,

e I'C S x> x §isa transition relation,

o F={F,...,F,} C2%is aset of sets of final states.

A run 7 of a GBA is said to be accepting iff, for all 1 < ¢ < k, we have

inf(m) N F; # 0



GBA and BA are equivalent

Let A= (S,1,T,F), where F = {Fy,...,F}}.

Build A’ = (', I, T, F'):
e S'=5x{1,...,k},
o I'=1x {1},
o ((s,i),a,(t,g)) €T iff (s,t) € T and:
— j=1if s € F},
— j= (i mod k)+1if s € F;.
o F'=1I x {1}.



The idea of the construction

Let K = (S, s9,—, L) be a Kripke structure over a set of atomic
propositions P, m : N — § be an infinite path through K, and ¢ be an
LTL formula.

To determine whether K, 7 = ¢, we label m with sets of subformulae of ¢

in a way that is compatible with LTL semantics.



Closure

Let ¢ be an LTL formula written in negation normal form.

The closure of ¢ is the set Cl(p) € 26UETL).

o v c Clyp)

e Oy eCllp) =9 € Cl(p)
o 10y € Cl(p) = 11,99 € Cl(p), for all e € {A,V,U,R}.

Example 4 Cl(Op) = Cl(TUp) = {Op,p, T }O

Q: What is the size of the closure relative to the size of ¢ 7



Labeling rules

Given 7 : N — 27 and o, we define 7 : N — 2¢1®) ag follows:

o for p e P, if p € 7(i) then p € w(1), and if —p € 7(i) then p & 7(7)

o if Y1 ANy € 7(2) then ¢y € 7(¢) and 9 € 7(1)

o if Yy Vibg € 7(7) then ¢ € 7(i) or Yy € 7(1)



Labeling rules

Uy = PV (oA OpUr))
YRy <= YA (pVO(PRY))

o if Oy € 7(i) then ¢ € 7(1 + 1)

o if Y1Urpo € 7(i) then either vy € 7(i), or ¥ € 7(i) and
YUYy € T(i 4+ 1)

o if YRy € 7(i) then o € 7(i) and either ¥y € 7(i) or
V1 RYs € T(i -+ 1)



Interpreting labelings

A sequence 7 satisfies a formula ¢ if one can find a labeling 7 satisfying:

e the labeling rules above

e v c7(0), and

o if Y1U1po € 7(i), then for some j > i, P9 € 7(j) (the eventuality

condition)



Building the GBA A, = (S, I,T,F)

The automaton A, is the set of labeling rules + the eventuality

condition(s) !

e ¥ = 27 is the alphabet

e S C 20U®) guch that, for all s € S :
— 1 N2 €s=; €sand vy €5
— P11V ES= P €ESOr Pa €S8

o [={seS|yes}

e (s,a,t) €T iff:
—forallpeP,pes=pca,and p€ s=p¢<a,

- Oves=1vYet,
— P1UYs € s = 1y € s or [P € s and YP1Us € ]
— Y1 Raps € s = P9 € s and [tP1 € s or PRy € ]



Building the GBA A, = (S,I,T,F)

e for each eventuality ¢Uy € Cl(yp), the transition relation ensures that

this will appear until the first occurrence of

e it is sufficient to ensure that, for each ¢l) € Cl(p), one goes
infinitely often either through a state in which this does not appear,
or through a state in which both ¢lf1) and 1) appear

o let o1UUYn, ..., UY, be the “until” subformulae of ¢

F =AF,...,F,}, where:
F,={se S| ¢;Up; € s and ; € s or ¢;UY; & s}

for all 1 <7 < n.



