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Abstract

We survey the properties of sets of integers recognizable by automata when
they are written in p-ary expansions. We focus on Cobham’s theorem which
characterizes the sets recognizable in different bases p and on its generaliza-
tion to Nm due to Semenov. We detail the remarkable proof recently given
by Muchnik for the theorem of Cobham-Semenov, the original proof being
published in Russian.

1 Introduction

This paper is a survey on the remarkable theorem of A. Cobham stating that the
only sets of numbers recognizable by automata, independently of the base of repre-
sentation, are those which are ultimately periodic. The proof given by Cobham, even
if it is elementary, is rather difficult [15]. In his book [24], S. Eilenberg proposed as
a challenge to find a more reasonable proof. Since this date, some researchers found
more comprehensible proofs for subsets of N, and more generally of Nm. The more
recent works demonstrate the power of first-order logic in the study of recognizable
sets of numbers [54, 49, 50].

One aim of this paper is to collect, from Büchi to Muchnik’s works [9, 54], all the
base-dependence properties of sets of numbers recognizable by finite automata, with
some emphasis on logical arguments. It contains several examples and some logical
proofs. In particular, the fascinating proof recently given by A. Muchnik is detailed
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and simplified. It states Cobham’s theorem and the generalization of Semenov to
Nm. The paper also contains bibliographic notes on the history of the results.

This survey is born of several lectures given by the authors, respectively V.
Bruyère, 29 April 93 - Université Libre de Bruxelles, G. Hansel, 26 April and 3 May
93 - Université Paris 6, C. Michaux, 2 September 92 - Université de Mons-Hainaut
and R. Villemaire, 23 November 92 - University McGill, 3 December 92 - Université
UQAM. It addresses readers accustomed with automata, but less familiar with first-
order logic. It may be read in different ways, depending on the interests of the
reader.

The paper is arranged in the following way. It begins with a brief section on
automata and a lesson of logic to make the reader more familiar with first-order
structures, definable sets and decidable theories.

Next, Section 4 deals with p-recognizable sets of numbers, i.e., sets of numbers
whose p-ary expansions are recognizable by a finite automaton. Various characteri-
zations of p-recognizability are related in Theorem 4.1 : iterated uniform morphisms,
algebraic formal power series, and definability by first-order formulae. Section 4 is
centered around these four models of p-recognizability. It begins and ends with two
generic examples. It also contains some bibliographic notes related to Theorem 4.1,
as well as notes about the automata associated with p-recognizable sets.

Section 5 is in the same spirit but for p-recognizable subsets of Nm. The four
models still hold and are again equivalent (Theorem 5.1).

Among the different characterizations of p-recognizability, Section 6 emphasizes
the logical one. The currently simplest proof of this equivalence is given, following
the references [40, 74]. At the origin, it was proved by R. Büchi in his paper [9].
Some corollaries of decidability and non p-recognizability are easily derived, together
with a powerful tool for operations preserving p-recognizability (Corollaries 6.2, 6.3
and 6.4).

Next, Section 7 studies the dependence of p-recognizability on the base of repre-
sentation. In particular it contains Cobham’s theorem (Theorem 7.7). It shows that
there are essentially three kinds of subsets of Nm : the sets recognizable in every base
p, the sets recognizable in certain bases only, and the sets recognizable in no base.
The first class is quite restricted, as it is limited to the rational sets of the monoid
(Nm, +). When m = 1, it is precisely the ultimately periodic sets. It is rather easy
to see that ultimately periodic sets are p-recognizable for every integer p > 2, but
the converse relies on the deep theorem of Cobham. As for p-recognizable sets, sets
recognizable in every base are characterized in various ways (Theorems 7.3 and 7.4),
including a logical characterization and a fine definability criterion found recently
by A. Muchnik [54]. Muchnik’s criterion is at the heart of his remarkable proof of
Cobham’s theorem over Nm, it also allows one to decide whether a p-recognizable
set of Nm is recognizable in every base (Proposition 7.6).

Section 8 is devoted to Muchnik’s proofs of the definability criterion and of the
theorem of Cobham-Semenov over Nm. The original proof is in Russian. We follow
it, simplifying some parts and detailing others.

The last section is a brief introduction to related works and references. The list
is certainly not complete; however it may give a flavour of connected research works.
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2 Preliminaries

We briefly recall some definitions about automata, automata with output and ra-
tional operations. These notions are well detailed in [24, 43, 58].

The sets A and B are finite alphabets. We denote by B∗ the set of all words
written with letters of B, including the empty word λ. Set B∗ is a monoid called
the free monoid generated by B, with concatenation as product operation and λ
as neutral element. The symbol |w| denotes the length of the word w ∈ B∗ and
wR the reverse of w. In this paper, A and B are often finite subsets of the set
N = {0, 1, 2, . . .} of natural numbers.

An automaton A = (Q, I, F, T ) is a graph with a set Q of vertices or states and
a set T ⊆ Q× B ×Q of edges or transitions labelled by an alphabet B. Set I ⊆ Q
is the set of initial states and F ⊆ Q the set of final states. A word w ∈ B∗ is
accepted (or computed) by A if it is the label of some path in A beginning with an
initial state and ending with a final state. We say that L ⊆ B∗ is recognizable if
it is the set of words computed by some finite automaton, i.e., with Q finite. An
automaton A is deterministic if it has a unique initial state and if T is a (partial)
function T : Q× B → Q. If T is a total function, A is moreover called complete.

Automata with output generalize the concept of automaton. Instead of a set
F of final states, they have an output function labelling each state by a letter of
some alphabet A. For classical automata, A = {0, 1}, and a state is labelled by 1
if it is final; otherwise it is labelled by 0. An automaton with output computes a
relation R ⊆ B∗ × A in the following way : (w, a) is in R if and only if there is a
path labelled by w from some initial state to some state whose output is a. Any
complete deterministic automaton with output computes a function s : B∗ → A.

Several proofs in this paper use well-known properties of automata and recogniz-
able sets, for instance the equivalence between automata and complete deterministic
automata, the closure under Boolean operations of the family of recognizable sets,
and the equivalence between automata reading words from left to right and those
reading them from right to left.

In particular, we frequently use properties of right-congruences associated with
recognizable sets. Let L ⊆ B∗; recall that the following relation ∼L over B∗

u ∼L v ⇔ [ ∀w ∈ B∗, uw ∈ L⇔ vw ∈ L ]

is a right-congruence, i.e., an equivalence relation which is right-stable :

u ∼L v ⇒ uw ∼L vw .

Set L is the union of some equivalence classes of ∼L. Moreover, L is recognizable if
and only if ∼L has finite index. All these porperties are known as the Myhill-Nerode
theorem.

The minimal automaton A(L) of a recognizable set L ⊆ B∗ is the smallest (in
number of states) complete deterministic automaton computing it. It is unique up
to isomorphism and can be constructed in the following way. Its states are the
classes of ∼L, the initial state is the class of the empty word and the final states are
the classes containing the words of L. A transition labelled by b ∈ B goes from the
class of w to the class of wb.
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The automaton A(L) has two nice properties. For any pair of distinct states
q, q′, there exists w ∈ B∗ such that T (q, w) is final and T (q′, w) is not, or vice versa.
Any class C of ∼L is a state of A(L), but it is also the set of words labelling paths
from the initial state to state C .

As usual, the rational operations are ∪, · and ∗. They operate on sets of words
L, L′ ⊆ B∗, L∪L′ is their union, L·L′ = {ww′ | w ∈ L, w′ ∈ L′} their concatenation
and L∗ the submonoid of B∗ generated by L. The set L ⊆ B∗ is then said to be
rational if it can be constructed from finite subsets of B∗ using a finite number of
rational operations. Kleene’s theorem states that L ⊆ B∗ is rational if and only if
it is recognizable.

The set N = {0, 1, 2, . . .} is also a monoid, with operation + and neutral element
0. The same holds for Nm, m > 2, with the vectorial sum + and neutral element 0.
We use the notation n for the m-tuple (n1, . . . , nm). Rational operations and rational
subsets can also be defined in these monoids. In Nm, the rational operations ∪, ·
and ∗ are interpreted as the operations ∪, + and the closure under addition (L∗ is the
submonoid of Nm generated by L). On the other hand, the notion of recognizable
set is extended to Nm using the right-congruence defined above : L ⊆ Nm is said to
be recognizable if the right-congruence ∼L has finite index. Kleene’s theorem holds
in N which is the free monoid generated by 1, but it is no longer true in Nm, m > 2.
Indeed, any recognizable subset is rational, but the converse is false. For instance
the diagonal L = {(n, n) | n ∈ N} is the rational set (1, 1)∗ of N2 but it is not
recognizable (since any two points (n, 0) and (m, 0) with n 6= m are not equivalent
for ∼L) (see for example [58, page 16]).

3 Some Notions of Logic

In this section, we give a short lesson in first-order logic. The reader is referred to
[3] for more details about first-order logic.

3.1 Structures and Formulae

In the sequel, we will often meet the structures 〈N, +〉 and 〈N, +, Vp〉. In first-order
logic, a structure

S = 〈D, (Ri)i∈I, (fj)j∈J , (ck)k∈K〉

consists of a domain D (some set), a family of relations (Ri)i∈I on D, a family of
functions (fj)j∈J on D and a family of constants (ck)k∈K of D. The relation Ri is a
subset of Dni and fj is a function from Dnj to D. The set {(Ri)i∈I , (fj)j∈J , (ck)k∈K}
is called the language of the structure S.

For instance, the structure 〈N, +〉 has the set N of natural numbers as domain
and the usual function +. It has no relation and no constant.

First-order formulae of the structure S (or in the language of S) are constructed
by certain rules. But first we need to list the symbols used in the formulae and to
define the terms.

In addition to the symbols of relations Ri, functions fj and constants ck, there
are also a countable set of variables x, y, z, . . ., the usual connectives ∨ (or), ∧ (and),
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¬ (not), → (if then), ↔ (if and only if), the quantifiers ∀ (for all), ∃ (there exists)
and the symbol = (equal).
The terms are defined by induction following two rules :

1. any variable and constant is a term,

2. if fj is a n-ary function and t1, . . . , tn are terms, then fj(t1, . . . , tn) is a term.

The formulae are generated by four rules :

1. if t1, t2 are terms, then t1 = t2 is a formula,

2. if Ri is a n-ary relation and t1, . . . , tn are terms, then Ri(t1, . . . , tn) is a formula,

3. if ϕ, φ are formulae, then ϕ ∨ φ, ϕ ∧ φ,¬ϕ, ϕ→ φ, ϕ↔ φ are formulae,

4. if ϕ is a formula and x is a variable, then ∀xϕ, ∃xϕ are formulae.

For clarity, parentheses (, ) are necessary during the construction of formulae. For-
mulae generated only by the first two rules are called atomic formulae. Sentences
are formulae with no free variables, i.e., variables which are not under the scope of a
quantifier. We sometimes write ϕ(x1, . . . , xn) to explicitly mention the free variables
of the formula ϕ.

We point out that the presentation is here a bit different from the one usually
given in logic textbooks.

3.2 Examples

The formula

(∃z)(x + z = y)

of the structure 〈N, +〉 means “there exists z ∈ N such that x + z = y”; hence it
defines the relation x 6 y. The constant x = 0 can also be defined in 〈N, +〉 by the
formula “x 6 y for all y ∈ N”, i.e.

(∀y)(x 6 y)

where x 6 y is the formula above. More generally, any element of N can be defined
in the language of 〈N, +〉. For x = 1, it is the following formula

(¬(x = 0)) ∧ ((∀y)(¬(y = 0))→ (x 6 y)) .

which means that x is not 0 and x 6 y for any y ∈ N\{0}. We use x = 0 as a
short-hand for the formula (∀y)(x 6 y) defining it.

It is also easy to see that the multiplication by a constant can be defined in
〈N, +〉. Multiplication of x by 3, y = 3x, is simply the formula y = x + x + x.

Finally, the property of commutativity of addition is described by the sentence

(∀x)(∀y)(x + y = y + x) .
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3.3 Definable Sets and Functions

Let ϕ(x1, . . . , xn) be a formula of the structure S and d1, . . . , dn elements of the
domain D. We use the notation

S |= ϕ(d1, . . . , dn)

to state that ϕ(x1, . . . , xn) is true when the free variables xi are replaced by the
elements di of D, 1 6 i 6 n. Therefore

{ (d1, . . . , dn) ∈ Dn | S |= ϕ(d1, . . . , dn) }

is the set of n-tuples of elements of D for which ϕ is true. We say that this set is
first-order definable (or in short definable) in the structure S by the formula ϕ.

We say that a constant c is definable in the structure S if the singleton {c} is
definable in S. A relation R is definable in S if the subset associated with R is
definable in S. In the same way, we say that a function f : Dn → D is definable in
the structure S if its graph

{ (d1, . . . , dn, d) ∈ Dn+1 | f(d1, . . . , dn) = d }

is definable in S.
In this paper, we mainly study sequences (sn)n>0 and more generally multi-

dimensional sequences, whose values belong to a finite subset A of N. These se-
quences are simply functions s : Nm → A, m > 1. Thus, we can speak of first-order
definable sequences.

For instance the sequence s : N→ A defined by sn = n mod 3 is definable in the
structure 〈N, +〉. Indeed, s−1(0) is the set of multiples of 3 which is defined by the
formula ϕ0(x)

(∃z)(x = 3z) .

The set s−1(1) is defined by ϕ1(x) equal to (∃z)(x = 3z + 1), and s−1(2) by ϕ2(x)
equal to (∃z)(x = 3z +2). Therefore, the sequence s : N→ {0, 1, 2}, or equivalently
its graph, is first-order definable by the following formula ϕ(x, y)

(ϕ0(x) ∧ y = 0) ∨ (ϕ1(x) ∧ y = 1) ∨ (ϕ2(x) ∧ y = 2) .

This example also shows that a sequence s : Nm → A, with A a finite subset of
N, is definable if and only if all the sets s−1(a), a ∈ A, are definable.

3.4 Equivalent Structures

Consider two structures S,S ′ with the same domain D. Any formula ϕ(x1, . . . , xn)
of S defines the set

Mϕ = { (d1, . . . , dn) ∈ Dn | S |= ϕ(d1, . . . , dn) } .

In the same way, any formula ϕ′ of S ′ defines the set Mϕ′ .
We say that S and S ′ are equivalent if for every formula ϕ(x1, . . . , xn) of S, there

exists a formula ϕ′(x1, . . . , xn) of S ′ such that

Mϕ = Mϕ′
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and conversely. In other words, the sets definable in S are the same as in S ′.
It is easy to check that two structures are equivalent. This holds if the relations,

the functions and the constants of the first structure are definable in the second
structure, and conversely.

For instance, 〈N, +〉 and 〈N, +, 6〉 are equivalent structures, because 6 is de-
finable in 〈N, +〉 (see above). Another example of equivalent structures is 〈N, +, · 〉
and 〈N, +, x2〉, where · is the usual product and y = x2 the square function. The
function y = x2 is of course definable in 〈N, +, · 〉 and conversely the product x· y = z
is definable in 〈N, +, x2〉 by the formula

(x + y)2 = x2 + 2· z + y2 .

Notice that any structure 〈D, (Ri)i∈I , (fj)j∈J , (ck)k∈K〉 is equivalent to a structure
with relations only. Functions fj and constants ck are easily replaced by relations
(its graph for the function fj and {ck} for the constant ck).

3.5 Decidable Theories

Given a structure S, the set of the sentences true for S is the theory of S, denoted
by Th(S). The theory Th(S) is decidable if there exists an algorithm which decides
if any sentence of S is true or false for S, i.e., if it belongs to Th(S) or not. There
exist various techniques to prove the decidability of a theory : quantifier elimination,
axiomatisation of the theory, finite automata [60].

A classical example of a decidable theory is Th(〈N, +〉) [59, 28], and an unde-
cidable theory is Th(〈N, +, · 〉) [14, 28].

4 Recognizability over N

4.1 An Appetizing Example

In this section we intuitively introduce four different methods to generate the char-
acteristic sequence of the powers of 2. The definitions will be more precise in the
next section.

Let p : N→ {0, 1} be the characteristic sequence of the powers of 2 :

011010001000000010 . . . .

The alphabet is A = {0, 1} and pn = 1 if n is a power of 2, pn = 0 otherwise. This
sequence has remarkable properties.

1. It is generated by a 2-substitution
Let

f : {a, b, c} → {a, b, c}2 :
a → ab
b → bc
c → cc

g : {a, b, c} → {0, 1} :
a → 0
b → 1
c → 0
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The iteration of f on the letter a gives rise to a sequence on the alphabet {a, b, c},
whose image by g is the sequence p.

a
f→ ab

f→ abbc
f→ abbcbccc

f→ abbcbcccbccccccc . . .
↓ g ↓ g ↓ g ↓ g ↓ g
0 → 01 → 0110 → 01101000 → 0110100010000000 . . .

Figure 1. Iteration of the 2-substitution f

2. It is 2-recognizable
The sequence p is computed by the following finite automaton with output (the

output of each state is indicated under the state).

Figure 2. An automaton computing p in base 2

The automaton computes the symbol pn from the binary expansion (n)2 of n. More
precisely the automaton reads the word (n)2 (the most significant digit of (n)2 is
read first) from the initial state q0 to some state q whose output symbol is pn. For
instance, the binary expansion (8)2 of 8 is 1000, the state reached after reading 1000
is q1 with output 1, so p8 = 1.

3. It is 2-definable
Consider the structure 〈N, +, V2〉 where V2 is the function defined by

V2(x) = y where y is the greatest power of 2 dividing x (x 6= 0),
V2(0) = 1.

The sequence p is first-order definable in 〈N, +, V2〉 since the subsets of integers
p−1(0) and p−1(1) are both definable by a formula of 〈N, +, V2〉 (see Section 3.3).
Indeed pn = 1 if and only if n is a power of 2 if and only if V2(n) = n. Let P2(x) be
the formula V2(x) = x; then

p−1(1) = { n ∈ N | 〈N, +, V2〉 |= P2(n) } ,

p−1(0) = { n ∈ N | 〈N, +, V2〉 |= ¬P2(n) } .

4. It is 2-algebraic
Consider the finite field F2 = {0, 1}. The formal power series P (x) ∈ F2[[x]]

P (x) =
∑
n>0

pnxn =
∑
n>0

x2n

is naturally associated with the sequence p. One verifies that P (x) is algebraic over
the ring F2[x], i.e., P (x) is a root of the following polynomial Q(t) with coefficients
in F2[x] :

Q(t) = t2 + t + x .

Indeed, P (x)2 = P (x2) = P (x)− x (remember that −1 = 1 and (a + b)2 = a2 + b2

in F2).
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4.2 Four Modes of Computing

We now give precise definitions of the four methods intuitively described in the
previous section. Theorem 4.1 states that they all generate the same sequences.

Let p > 2 be an integer and s : N→ A a sequence with values in a finite alphabet
A ⊂ N .

1. p-substitution
Let B be a finite alphabet. Let f : B → Bp be a function called a p-substitution,

which replaces each letter of B by some word of B∗ of length p. The function f
can be extended to a morphism on B∗. If f(b) begins with the letter b for some
b ∈ B, then the sequence (fn(b))n>0 converges towards a fixed point fω(b) of f . Let
g : B → A be a function. Then, the image by g of the fixed point fω(b) yields a
sequence s : N→ A.

A sequence s generated by this kind of process is said to be generated by p-
substitution.

2. p-automaton
A p-automaton is a complete deterministic finite automaton with output, whose

transitions are labelled by {0, 1, . . . , p− 1} and whose states are labelled by A (the
output).

A sequence s is called p-recognizable if it is computed by some p-automaton in
the following way. The p-ary expansion (n)p of n ∈ N is a word of {0, 1, . . . , p− 1}∗.
Starting in the initial state and using the transitions labelled by the letters of (n)p,
one reaches some state q. Then sn is equal to the output of q. The way a p-
automaton reads (n)p is from the most significant digit to the least one; this choice
is arbitrary.

3. p-definability
We consider the structure 〈N, +, Vp〉, where the function Vp is defined as

Vp(x) = y where y is the greatest power of p dividing x (x 6= 0),
Vp(0) = 1.

A sequence s is p-definable if for each letter a ∈ A, there exists a first-order formula
ϕa of 〈N, +, Vp〉 such that

s−1(a) = { n ∈ N | 〈N, +, Vp〉 |= ϕa(n) } .

4. p-algebraicity
We assume that p is a prime number.
Let K be a finite field with characteristic p such that A is embedded into K (for

instance K = Fp = {0, 1, . . . , p − 1} if the cardinality of A is less than or equal to
p). With the sequence s is associated the formal power series

S(x) =
∑
n>0

snx
n ∈ K[[x]] .

We say that s is p-algebraic if S(x) is algebraic over K[x], i.e., if there exist poly-
nomials qi(x) ∈ K[x] such that S(x) is a root of

Q(t) = qj(x)tj + qj−1(x)tj−1 + · · ·+ q0(x) ∈ K[x][t]\{0} .
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Theorem 4.1 Let p > 2 be an integer and s : N→ A a sequence with values in a
finite alphabet A ⊂ N. The following are equivalent :
(1) s is generated by p-substitution,
(2) s is p-recognizable,
(3) s is p-definable,
(4) s is p-algebraic (under the additional assumption that p is prime).

Some hints on the proof are given in Section 4.4.
There exist sequences which are not p-recognizable, for any p > 2; for instance

the characteristic sequence of the squares, or the prime numbers (see [9, 63, 51]; see
also Corollary 6.3).

4.3 Notes on p-Automata

Given an integer n, its p-ary expansion is the word (n)p = w0w1 . . . wk of {0, 1, . . . , p−
1}∗ such that w0 6= 0 and

n = w0p
k + w1p

k−1 + · · ·+ wkp
0 .

By convention, (0)p is the empty word λ. Conversely, to any word w = w0w1 . . . wk ∈
{0, . . . , p− 1}∗ corresponds its value [w]p ∈ N equal to w0p

k + w1p
k−1 + · · ·+ wkp

0.
Different words can have the same integer as value, due to the leading zeros. In fact,
any n ∈ N has an infinite number of representations w such that [w]p = n; it is the
infinite set 0∗(n)p.

By definition, p-automata only treat the p-ary expansion of each integer n. We
can always suppose that a transition labelled by 0 exists, which loops on the initial
state q0. In this way, the p-automaton identically treats all the words w such that
[w]p = n (see Figure 2). From now on, we will always assume that any p-automaton
has a loop labelled by 0 on its initial state.

The family of p-recognizable subsets of N are also much studied. We say that
M ⊆ N is p-recognizable if its characteristic sequence m : N→ {0, 1} defined by

mn = 1 ⇔ n ∈M

is p-recognizable.
Equivalently M is p-recognizable if and only if there is a finite automaton ac-

cepting the set { w ∈ {0, . . . , p−1}∗ | [w]p ∈M }. This automaton is, for instance,
some p-automaton computing the sequence m whose states with output 1 are con-
sidered as final states. Actually we have the following more general result, stating
that p-recognizability is independent of leading zeros (see [24, page 106]).

Proposition 4.2 A set M ⊆ N is p-recognizable if and only if there exists a finite
(deterministic or not) automaton accepting L ⊆ {0, . . . , p− 1}∗ such that

M = {[w]p | w ∈ L} .

It is also possible to characterize p-recognizable sets M of integers by an equiva-
lence relation of finite index (see [24, page 107]. This relation is just the translation to
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N of the right-congruence∼L of a finite automaton computing L = { w | [w]p ∈M }
(see Section 2). More precisely, the relation ∼p,M is defined as follows. Let n, m ∈ N,

n ∼p,M m ⇔ [ npk + r ∈M ⇔ mpk + r ∈M ∀k > 0, ∀r 0 6 r < pk ] .

Consequently, we have

Proposition 4.3 A set M ⊆ N is p-recognizable if and only if the equivalence
relation ∼p,M has finite index.

In the sequel, we will need automata reading p-ary expansions of integers from
right to left instead of left to right. In that case, the equivalence relation ∼p,MR is
slightly different :

n ∼p,MR m ⇔ [ n + rpk ∈M ⇔ m + rpl ∈M ∀r, ∀pk > n, pl > m ] .

We have the analogues of Proposition 4.2 and Proposition 4.3 when reading words
from right to left. Since reading from left to right does not change the concept, the
choice is a matter of convenience. Later we will see that reading from right to left
is a good choice for generalization to higher dimensions.

We have seen that p-recognizable sets of integers coincide with p-recognizable
characteristic sequences. Conversely any p-recognizable sequence s : N → A with
values in a finite alphabet A is associated with the p-recognizable sets s−1(a) ⊆ N.
Indeed, if A is a p-automaton for s, then s−1(a) is computed by A where the states
with output a are considered as the final states [24, Chapter 15].

Proposition 4.4 Let A ⊂ N be a finite alphabet and s : N→ A a sequence. Then
s is p-recognizable if and only if each set s−1(a), a ∈ A, is p-recognizable.

This proposition allows to transfer theorems on p-recognizable sets into theorems
on p-recognizable sequences. We will often use this principle in the sequel.

As for p-recognizable sets M ⊆ N, any p-recognizable sequence s is characterized
by the finite index of the equivalence ∼p,s (or ∼p,sR ) defined by

n ∼p,s m ⇔ snpk+r = smpk+r ∀k, ∀r < pk .

4.4 Bibliographic Notes

Theorem 4.1 results from several independent works.

The equivalence (1)⇔ (2) is proved in [16] (see also [24, Chapter 15]). The idea
of the proof is the following. Let A be a p-automaton computing the sequence s.
Let Q be the set of states, q0 the initial state and T : Q× {0, . . . , p− 1} → Q the
transition function. We can suppose that T (q0, 0) = q0 (see Section 4.3). We define
the p-substitution f : Q→ Qp by

f(q) = T (q, 0)T (q, 1) · · ·T (q, p− 1)

for each q ∈ Q. The function f has a fixed point fω(q0) because f(q0) begins with
q0. Let g be the function from Q to A defined by g(q) equal to the output of q. Then
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the image by g of the fixed point of f is the sequence s (this is proved by induction
on the length of the p-ary expansion of n). The proof of the reversed implication
uses the same construction backwards.

The equivalence (2) ⇔ (4) is proved in [13] (see also [12]). Here p-automata for
the sequence s read p-ary expansions of n from right to left (see Section 4.3). The
proof is not easy; it is based on the finiteness of the p-kernel of the sequence s. The
p-kernel is the set of subsequences of s equal to

{(snpk+r)n>0 | k > 0, r < pk} .

The p-kernel is finite if and only if the equivalence relation ∼p,sR has finite index.

The equivalence (2)⇔ (3) is proved in detail in Section 6, following [40, 74].
The first proof of this equivalence was given by J. R. Büchi in 1960 [9]. It was

well detailed for p = 2 but just sketched for p > 2. Büchi proved that sequences
are 2-recognizable if and only if they are defined by weak-monadic second-order
formulae of the structure 〈N, S〉 where S is the successor function1. Roughly the
formulae describe how 2-automata compute 2-recognizable sequences. Büchi then
stated that these formulae are equivalent to first-order formulae of the structure
〈N, +, P2〉, where P2(x) is the unary relation “x is a power of 2”.

In 1963, R. MacNaughton reviewed Büchi’s paper [46]. He noticed that this
equivalence with the structure 〈N, +, P2〉 was not correctly proved. He suggested
replacing it with the structure 〈N, +,∈2〉, where ∈2(x, y) is the binary relation “y is
a power of 2 occurring in the binary expansion of x” (here “occurring” means that
the coefficient of y is 1 in the binary expansion of x, i.e., x =

∑
∈2(x,y)

y).

Referring to the works of [46, 72], M. Boffa suggested the use of the structure
〈N, +, Vp〉 instead of 〈N, +, Pp〉 [7]. This led to the work [8] where Büchi’s proof was
detailed and corrected for any p > 2. The implication (3) ⇒ (2) is proved directly
without any use of weak-monadic second-order formulae, based on the reference [40].
The other implication is in the same spirit as in [9].

C. Michaux and F. Point gave in 1986 another proof of (2)⇔ (3) [48]. The proof
of the implication (3)⇒ (2) was the same as in [8]. For the converse, they used an
induction on rational expressions over the alphabet {0, . . . , p− 1}.

Recently, R. Villemaire gave a short proof for the implication (2)⇒ (3) directly
using first-order formulae describing sets of integers computed by p-automata [73,
74].

Let us come back to the structures 〈N, +, P2〉, 〈N, +,∈2〉 and 〈N, +, V2〉. It
is easy to see that 〈N, +,∈2〉 and 〈N, +, V2〉 are equivalent structures [48]. The
predicate P2(x) is definable in 〈N, +, V2〉 by the formula V2(x) = x. However A.
Semenov proved in [67] that the function V2 is not definable in 〈N, +, P2〉. This
shows that 〈N, +, P2〉 and 〈N, +, V2〉 are not equivalent structures, as conjectured by
MacNaughton [46].

More generally, the structures 〈N, +, Pp〉 and 〈N, +, Vp〉 are not equivalent. This
property is a corollary of several decidability results; this has been first noticed by

1Weak-monadic second-order formulae of 〈N, S〉 are generalizations of first-order ones by allow-
ing additional variables describing finite subsets of N and quantification over them.
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F. Delon [20] (see Figure 3). The theories of the following first-order structures are
decidable : 〈N, +, Vp〉 [8], 〈N, +, px〉 where px is the exponential function [68, 11].
However, one can show that the theory of 〈N, +, Vp, p

x〉 is undecidable (see [11] or
[73]). On the other hand, Pp is definable in 〈N, +, Vp〉 and 〈N, +, px〉.

〈N, +, Vp〉 decidable
↗ ↘

〈N, +, Pp〉 decidable 〈N, +, Vp, p
x〉 undecidable

↘ ↗
〈N, +, px〉 decidable

Figure 3. Definability relations between four structures

Assume now that 〈N, +, Pp〉 and 〈N, +, Vp〉 are equivalent. Then the undecidable
theory 〈N, +, Vp, p

x〉 is equivalent to 〈N, +, Pp, p
x〉, itself equivalent to the decidable

theory 〈N, +, px〉. This is impossible.

4.5 A Dessert Example

We end Section 4 by considering the remarkable Thue-Morse sequence t : N→ {0, 1}

1001011001101001 . . . .

The alphabet is A = {0, 1} and tn = 1 if (n)2 has an even number of 1, tn = 0
otherwise. This sequence has all the properties described in Theorem 4.1.

It is easy to find a 2-automaton computing it. This automaton counts the sym-
bols 1 inside the words w ∈ {0, 1}∗.

Figure 4. A 2-automaton for the Thue-Morse sequence

From this automaton, we construct the following 2-substitution (see Section 4.4) :

f :
0 → 01
1 → 10

g : identity

One of the two fixed points of f is the sequence t, the other is the sequence 1− t.
The sequence t is also 2-algebraic. Indeed its 2-kernel

{ (tn2k+r)n>0 | k > 0, r < 2k }

has two elements : the sequences t (for k = 1, r = 0) and 1− t (for k = 1, r = 1).
Then

T (x) =
∑

t2nx
2n +

∑
t2n+1x

2n+1

=
∑

tnx
2n +

∑
(1− tn)x2n+1

= T (x2) +
x

1 + x2
− xT (x2) .
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The series T (x) is a root of the polynomial

Q(t) = (1 + x)3t2 + (1 + x)2t + x ∈ F2[x][t] .

Finally t is 2-definable. We just give an idea of a formula of 〈N, +, V2〉 defining
it. It will be made more precise in Section 6. The required formula should say that
tn = 1 if and only if the binary expansion (n)2 of n contains an even number of 1’s.
Equivalently, there exists an integer m such that (m)2 “counts” the even number
of 1’s in (n)2. Roughly, (m)2 is constructed from (n)2 by keeping one 1 among
two consecutive 1’s of (n)2 and replacing the other by 0, as shown on the following
example (for simplicity the case n = 0 is treated separately).

(n)2 = 100110100101000

(m)2 = 000100100001000

More precisely, tn = 1, n > 1, if and only if 〈N, +, V2〉 |= ϕ(n) where the formula
ϕ(x) says that there exists y such that

1. the first power of 2 occurring in the 2-expansion of x is the same than the one
occurring in y ( V2(x) = V2(y) ),

2. the last power of 2 (denoted by λ2(x)) occurring in the 2-expansion of x does
not occur in y ( ¬∈2(y, λ2(x)) ),

3. for any two consecutive powers of 2 occurring in x, one occurs in y if and only
if the other one does not.

This is a formula of 〈N, +, V2〉, because ∈2(x, y) and λ2(x) are definable in 〈N, +, V2〉.

5 Recognizability over Nm

5.1 Four Modes of Computing

The four modes of computing p-recognizable sequences s : N→ A remain applicable
for functions s : Nm → A, for every m > 2. These functions s are called again
sequences. Theorem 4.1 is still valid in this general context. For simplicity, we only
consider sequences s : N2 → A. Each of the following definitions is easily generalized
to sequences s : Nm → A, for any m > 2.

Let p > 2 be an integer and s : N2 → A a sequence. We adapt to N2 the
four definitions of p-substitution, p-automaton, p-definability and p-algebraicity. We
illustrate each of them with a particular sequence t : N2 → {0, 1}, essentially Pascal’s
triangle modulo 2. It is defined by tn,m = 0 if, for some k > 0, the same power 2k of
2 occurs in the binary expansions of n and m, otherwise tn,m = 1.
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↑ m
...

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 · · ·
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
n→

Figure 5. A sequence similar to Pascal’s triangle modulo 2

1. p-definability
The sequence s is called p-definable if for any a ∈ A, the set s−1(a) ⊆ N2 is

definable by a first-order formula ϕa(x, y) of 〈N, +, Vp〉.
The example of sequence t is definable in 〈N, +, V2〉. Indeed the formula ϕ(x, y)

(∃z)( ∈2(x, z) ∧ ∈2(y, z) )

defines the set t−1(0) ⊆ N2 and its negation defines the set t−1(1).

2. p-automaton
A p-automaton is a complete deterministic finite automaton with output (in the

alphabet A). Its transitions are labelled by the alphabet {0, . . . , p− 1}2 in a way to
read pairs of integers.

More precisely, any word (u, v) over the alphabet {0, . . . , p−1}2 has components
u, v with the same length. Its value ([u]p, [v]p) is a pair (n, m) of integers. It may
happen that u has leading zeros and v not, as |u| = |v|. Conversely, given a pair
(n, m) of integers (suppose for instance that n > m), let u = (n)p, v = (m)p and
i = |u| − |v|, then (0, 0)∗(u, 0iv) is the set of all pairs (u′, v′) over the alphabet
{0, . . . , p− 1}2 such that [u′]p = n, [v′]p = m.

This p-automaton computes a p-recognizable sequence s : N2 → A in the follow-
ing way. Let (u, v) ∈ [{0, . . . , p − 1}2]∗ such that n = [u]p, m = [v]p. Starting with
the initial state, the reading of (u, v) leads to some state whose ouput defines sn,m.

It is easy to construct a 2-automaton computing the particular sequence t. The
alphabet labelling the edges is {0, 1}2 = {

(
0
0

)
,
(

1
0

)
,
(

0
1

)
,
(

1
1

)
}.

Figure 6. A 2-automaton for sequence t

3. p-substitution
Let B be a finite alphabet. Let f : B → Bp×p be a p-substitution, it replaces

each letter of B by some square of Bp×p with side p. The substitution f extends
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into a function operating over the set of squares (see the example below). It has
a fixed point if the bottom-left corner of f(b) is equal to b for some letter b ∈ B.
Let g : B → A be a function; the image by g of this fixed point yields a sequence
s : N2 → A.

A sequence s generated by this kind of process is said to be generated by p-
substitution.

The example t is generated by 2-substitution, in the following way. We construct
it by looking at the 2-automaton of Figure 6 (see also Section 4.4). Let A = B =
{0, 1}. Then f : B → B2×2 is defined as

f(1) =
1 0
1 1

, f(0) =
0 0
0 0

The function g : B → A is here the identity. The iteration of f on 1 gives a fixed
point whose image by g is the sequence t.

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 → 1 1 → 1 1 1 1 → 1 1 1 1 1 1 1 1 → . . .

Figure 7. Iteration of the 2-substitution f

4. p-algebraicity
We assume that p is a prime number.
Let K be a finite field with characteristic p such that A is embedded into K.

The sequence s : N2 → A is p-algebraic if the formal power series

S(x, y) =
∑

n,m>0

sn,mxnym ∈ K[[x, y]]

is algebraic over K[x, y], i.e., there exist polynomials qi(x, y) ∈ K[x, y] such that
S(x, y) is a root of the polynomial

Q(t) = qj(x, y)tj + qj−1(x, y)tj−1 + · · ·+ q0(x, y) ∈ K[x, y][t]\{0} .

The sequence t is 2-algebraic because the series T (x, y) is algebraic over F2[x, y] :

(1 + x + y)T (x, y) + 1 = 0 .

Indeed, considering the 2-kernel of t, we see that tn,m = t2n,2m = t2n+1,2m = t2n,2m+1

and that t2n+1,2m+1 = 0 for all n, m > 0. So

T (x, y) =
∑

t2n,2mx2ny2m +
∑

t2n+1,2mx2n+1y2m

+
∑

t2n,2m+1x
2ny2m+1 +

∑
t2n+1,2m+1x

2n+1y2m+1

= (1 + x + y)
∑

tn,mx2ny2m + 0
= (1 + x + y)T (x2, y2) .
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Theorem 5.1 Let p > 2 and m > 1. Let s : Nm → A be a sequence. The following
are equivalent :
(1) s is generated by p-substitution,
(2) s is p-recognizable,
(3) s is p-definable,
(4) s is p-algebraic (under the additional assumption that p is a prime number).

In each of the four modes, m is respectively the dimension of f(b), b ∈ B where f
is a p-substitution for s, the number of components of letters labelling the transitions
of a p-automaton computing s, the number of variables of a formula defining s in
〈N, +, Vp〉, or the number of variables of the formal power series associated with s.

5.2 Notes

Several authors have independently contributed to Theorem 5.1. They all ob-
served that in Nm, m > 2, the “good” p-automata are those reading m-tuples
(w1, . . . , wm) with components wi of equal length. In other words, the “good”
monoid is [{0, . . . , p− 1}m]∗ rather than [{0, . . . , p− 1}∗]m. The monoid [{0, . . . , p−
1}m]∗ is free, so Kleene’s theorem holds.

The proof of equivalence (1) ⇔ (2) is in the same spirit as for Theorem 4.1
(see [10] where more general substitutions and automata are also considered). We
followed this idea for the example t. The equivalence (2)⇔ (3) was already included
in the one-dimensional case (see Section 4.4). It is proved in details in the next
section. The equivalence (2) ⇔ (4) is established in [23]. See also [64, 65] for
another proof of equivalences (1)⇔ (2)⇔ (4).

All the notes we gave for p-automata labelled by {0, . . . , p− 1} still hold for the
labelling by {0, . . . , p − 1}m, m > 2. By definition, p-recognizable sets M ⊆ Nm

are those sets whose characteristic sequence m : Nm → {0, 1} is p-recognizable.
Conversely, any p-recognizable sequence s : Nm → A gives the p-recognizable sets
s−1(a) ⊆ Nm, a ∈ A.

Proposition 5.2 Let m > 1 and s : Nm → A be a sequence. Then s is p-
recognizable if and only if each set s−1(a), a ∈ A, is p-recognizable.

6 Logic and Automata

We give here a simple proof of the equivalence (2) ⇔ (3) of Theorem 5.1. We
consider sets M ⊆ Nm instead of sequences s : Nm → A (see Proposition 5.2). The
proof follows the ideas of references [40, 74].

Theorem 6.1 Let m > 1 and M ⊆ Nm. Let p > 2. Then M is p-recognizable if
and only if M is p-definable.

Proof. (1) First we construct a finite automatonAϕ for any formula ϕ(x1, . . . , xm)
of 〈N, +, Vp〉 defining the set

Mϕ = { (n1, . . . , nm) ∈ Nm | 〈N, +, Vp〉 |= ϕ(n1, . . . , nm) } .
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This automaton Aϕ computes the set of all words (w1, . . . , wm) over the alphabet
{0, . . .,p− 1}m such that

([w1]p, . . . , [wm]p) ∈Mϕ

(all the possible leading zeros are considered), it reads words from right to left, it is
complete and deterministic (see Sections 4.3 and 5.2).

The proof is by induction on the formulae. For simplicity of the proof, we work
with the structure 〈N, R+, RVp〉, where R+(x, y, z) is the relation x + y = z and
RVp(x, y) is the relation Vp(x) = y. This structure is equivalent to 〈N, +, Vp〉 (see
Section 3.4)

The atomic formulae of 〈N, R+, RVp〉 are the equality x = y and the two relations
R+(x, y, z), RVp(x, y). The corresponding sets M=, M+, MVp are p-recognizable.
Indeed, for p = 2, the automata A=,A+,AVp are the following ones (each final state
is denoted by an outgoing small arrow). The addition realized by A+ is the usual
addition with carry.

Figure 8.1 Automata A= and A+ in base 2

Figure 8.2 Automaton AV2 in base 2

Now, by induction, assume that automata Aϕ and Aψ are constructed, for for-
mulae ϕ and ψ respectively. We show how to obtain automata Aϕ∨ψ,A¬ϕ and A∃xϕ.

First, consider the formula φ(x1, . . . , xk, y1, . . . , yl, z1, . . . , zm) defined as

ϕ(x1, . . . , xk, y1, . . . , yl) ∨ ψ(y1, . . . , yl, z1, . . . , zm) .
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Any edge of Aϕ is labelled by some letter (a1, . . . , ak, b1, . . . , bl) of the alphabet
{0, . . . , p− 1}k+l. We replace this letter by the set of letters

{(a1, . . . , ak, b1, . . . , bl)} × {0, . . . , p− 1}m .

In the same way, for any edge of Aψ, we replace its labelling (b1, . . . , bl, c1, . . . , cm) ∈
{0, . . . , p− 1}l+m by the set of letters

{0, . . . , p− 1}k × {(b1, . . . , bl, c1, . . . , cm)} .

The two new automata have now their labelling in the same alphabet {0, . . . , p −
1}k+l+m. Their union gives the automaton Aφ∨ψ.

Secondly, consider the formula ϕ(x1, . . . , xk) and the automaton Aϕ. The set
M¬ϕ is equal to Nk\Mϕ. The automaton A¬ϕ is simply the complement of Aϕ.

Finally, given the formula ϕ(x, x1, . . . , xk) and the automaton Aϕ, it remains to
construct the automaton A∃xϕ associated with the formula ∃xϕ(x, x1, . . . , xk). The
alphabet labelling the transitions ofAϕ is {0, . . . , p−1}k+1. Each letter (a, a1, . . . , ak)
is then replaced by the letter (a1, . . . , ak) where a is suppressed. The new automa-
ton is generally no longer in the suitable form : it may be not deterministic, and a
problem with the lack of leading zeros may happen whenever the label (a, 0, . . . , 0)
of a transition in Aϕ going to a final state has been replaced by (0, . . . , 0). To solve
the last problem, use Proposition 4.2 in a way to have again all possible leading
zeros. Now the non deterministic automaton can be transformed to a deterministic
one in the usual way.

(2) For the converse, we show how to encode any automaton in 〈N, +, Vp〉.
First we introduce p new relations ∈0,p(x, y),∈1,p(x, y), . . . ,∈p−1,p(x, y) and a new

function λp(x), generalizing ∈2(x, y) and λ2(x) introduced in Sections 4.4 and 4.5.
The relation ∈j,p(x, y), for 0 6 j < p, means that y is a power of p, and the coefficient
of y in the p-ary expansion of x is equal to j, i.e., x =

∑
∈j,p(x,y)

j· y. For powers y

strictly greater than x, we consider ∈0,p(x, y) to be satisfied (leading zeros). The
function λp(x) denotes the greatest power of p occurring with a nonzero coefficient
in the p-ary expansion of x. By convention, λp(0) = 1.

The relation ∈j,p(x, y), 0 6 j < p, is definable in 〈N, +, Vp〉 by the formula

Pp(y) ∧ [ (∃z)(∃t)(x = z + j· y + t) ∧ (z < y) ∧ ( (y < Vp(t)) ∨ (t = 0) ) ] .

Roughly this formula says that the powers of p of the p-ary expansion of x are shared
into three groups : one group is y only (or equivalently the integer j· y), the powers
less than y are the second group (the integer z) and the powers greater than y are
the third group (the integer t). So, it is possible to express in 〈N, +, Vp〉 the different
letters w0, . . . , wk of the p-ary expansion (n)p = w0 . . . wk of any integer n, as well
as leading zeros.

There is also a formula in 〈N, +, Vp〉 for λp(x) = y :

[ Pp(y) ∧ y 6 x ∧ ((∀z)(Pp(z) ∧ y < z)→ (x < z)) ]
∨ [ (x = 0) ∧ (y = 1) ]
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which means that y is a power of p less than or equal to x, such that any power of
p greater than y must be greater than x.

We now complete the proof of the theorem. The set M ⊆ Nm is p-recognizable by
hypothesis. Let A be a complete deterministic finite automaton with set of states Q,
initial state q0, set of final states F and transition function T : Q×{0, . . . , p−1}m →
Q. For simplicity we suppose that A reads words from right to left. The m-tuple
(n1, . . . , nm) belongs to M if and only if there exists a word (w1, . . . , wm) over the
alphabet {0, . . . , p − 1}m such that [wi]p = ni, 1 6 i 6 m, and if the m-tuple of
reversed words (wR

1 , . . . , wR
m) labels a path in A from q0 to some state q ∈ F . This

defines a finite sequence q0 . . . q of states, beginning with q0, ending with q, and
respecting the transitions.

Without loss of generality, we can replace any of the l states of A by a l-tuple of
letters of {0, . . . , p− 1}, respectively q0 by (1, 0, . . . , 0), q1 by (0, 1, 0, . . . , 0), . . . and
ql−1 by (0, . . . , 0, 1). The finite sequence q0 . . . q is now a word (u1, . . . , ul) over the
alphabet {0, . . . , p−1}l. This sequence can also be considered as a particular l-tuple
of integers (y1, . . . , yl) equal to ([u1]p, . . . , [ul]p). The formula we want to construct
describes such a l-tuple.

For any integer n, we denote by n(i), i > 0, the digit j such that ∈j,p (n, pi) is
true. So n =

∑+∞
i=0 n(i)pi. For any state q, we denote by q(i) its ith component,

1 6 i 6 l.
Now (x1, . . . , xm) belongs to M if and only if there exists a l-tuple of integers

y1, . . . , yl such that

1. (y1(0), . . . , yl(0)) is the initial state q0 = (1, 0, . . . , 0),

2. (y1(k), . . . , yl(k)) is some final state of F , with pk > max
16j6m

λp(xj),

3. for all 0 6 i < k, if (y1(i), . . . , yl(i)) is the state q, then (y1(i+1), . . . , yl(i+1))
is the state T (q, (x1(i), . . . , xm(i))).

These three conditions can be expressed by a formula ϕ(x1, . . . , xm), precisely :

(∃y1) . . . (∃yl)(∃z) Pp(z)
∧ (z > max

16j6m
λp(xj))

∧ ϕ1(y1, . . . , yl)
∧ ϕ2(y1, . . . , yl, z)
∧ ϕ3(x1, . . . , xm, y1, . . . , yl, z)

with
ϕ1 :

∧l
j=1 ∈q0(j),p (yj, 1)

ϕ2 :
∨

q∈F

∧l
j=1 ∈q(j),p (yj, z)

ϕ3 : (∀t)( Pp(t) ∧ (t < z) ∧∧
T (q,(a1,...,am))=q′

[
∧l

j=1 ∈q(j),p (yj, t) ∧
∧m

j=1 ∈aj ,p (xj, t)
→ ∧l

j=1 ∈q′(j),p (yj, p· t) ] .

Do not forget that the automaton A is given and therefore is considered as a constant
in the previous formula.
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Another simple proof of Büchi’s theorem is given in [71]. It has the same structure
as ours, but it uses second-order formulae applied to words (as in [9]) instead of
first-order formulae applied to integers. So the proof given in [71] together with a
standard (for logicians) translation from second-order to first-order logic, leads to
another way of proving Theorem 6.1.

The first part of our proof follows ideas given by Hodgson in [40]. He showed
in this paper how automata can be used to prove that some theories are decidable.
In particular, the theory Th(〈N, +, Vp〉) is decidable, as a corollary of the previous
theorem (see also [9]).

Corollary 6.2 Th(〈N, +〉) and Th(〈N, +, Vp〉) are decidable theories.

Proof. It is enough to give the proof for 〈N, +, Vp〉. Let ϕ be a sentence in 〈N, +, Vp〉.
We can assume that ϕ is the formula (∃x)ψ(x) or ¬(∃x)ψ(x) (by making some
manipulations of formulae if necessary). The proof above shows how to construct
a p-automaton for the p-recognizable set Mψ = { n ∈ N | 〈N, +, Vp〉 |= ψ(n) }.
By classical results of automata theory, the emptiness of the set Mψ is decidable. It
follows that it is decidable whether the sentence ϕ is true or not.

In Section 8.1, we will prove the interesting Proposition 7.6, as an easy conse-
quence of the previous corollary. We have also the following corollary [9].

Corollary 6.3 The characteristic sequence of the set of squares {n2 | n ∈ N} is
not p-recognizable, for any p > 2.

Proof. We first prove that the square fonction y = x2 is definable in 〈N, +, RS〉
where RS(y) is the relation “y is a square”. The function y = x2 is defined by a
formula saying that “y is a square and the next square z after y has the property
that y + 2x + 1 = z”. This formula exists in 〈N, +, RS〉.

Ab absurdo, assume that the characteristic sequence of the squares is p-definable,
i.e., the relation RS(y) is p-definable by some formula ϕ(y). Thus, the function
y = x2 is also p-definable. Indeed, in the formula defining y = x2 in 〈N, +, RS〉,
replace each occurrence of RS by the formula ϕ of 〈N, +, Vp〉. More generally, any
formula of 〈N, +, x2〉 is a formula of 〈N, +, Vp〉.

This means that 〈N, +, x2〉 is decidable, since 〈N, +, Vp〉 is. But 〈N, +, x2〉 and
〈N, +, · 〉 are equivalent structures and Th(〈N, +, · 〉) is undecidable (see Section 3).
This yields the contradiction.

We have seen in the proof of Theorem 6.1 that p-recognizability is preserved by
the Boolean operations and also by projection. Another interesting corollary of this
theorem is that some operations over integers preserve p-recognizability.

For instance, if M ⊆ N is p-recognizable, then c·M is still p-recognizable where
c is any constant. Indeed, if ϕ(x) is a formula of 〈N, +, Vp〉 defining M , then the for-
mula (∃y)( (x = c· y)∧ϕ(y) ) defines the set c·M . Also addition, substraction, mul-
tiplication or division by a constant are operations which preserve p-recognizability.

The diagonal of any p-recognizable subset M of N2, defined by {n ∈ N | (n, n) ∈
M}, is also a p-recognizable subset of N. If ϕ(x, y) is a formula for M , then ϕ(x, x)
is a formula for its diagonal.
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Generally, any operation definable in 〈N, +, Vp〉, preserves p-recognizability. The
proof of this property is straightforward and uniform in 〈N, +, Vp〉. There also exist
proofs using automata for the operations given previously as examples (see [58] or
[65]). However, each operation needs its own proof and it soon becomes difficult to
find a proof for more complex operations.

Corollary 6.4 Let f : Nm → Nn be an operation over integers. If f is definable
in 〈N, +, Vp〉 and if M ⊆ Nm is p-recognizable, then f(M) is p-recognizable.

Proof. The proof is very easy. M is defined by a formula ϕ(y1, . . . , ym). The graph
of f : Nm → Nn is defined by a formula φ(y1, . . . , ym, x1, . . . , xn). Then f(M) is
defined by the formula (∃y1) . . . (∃ym)ϕ(y1, . . . , ym) ∧ φ(y1, . . . , ym, x1, . . . , xn).

7 Base-Dependence

Four equivalent modes characterize p-recognizable sequences s : Nm → A : p-
substitutions, p-automata, p-definability, p-algebraicity (Theorems 4.1, 5.1). They
heavily depend on the base p. We are going to see that there are three kinds
of sequences s : the sequences recognizable in every base p > 2, the sequences
recognizable in certain bases p only and the sequences recognizable in no base p.

7.1 Base pk

Let us come back to the characteristic sequence p of the powers of two (see Section
4.1). It is generated by the 2-substitution

f : {a, b, c} → {a, b, c}2 :
a → ab
b → bc
c → cc

g : {a, b, c} → {0, 1} :
a → 0
b → 1
c → 0

It is also generated by some 2k-substitution, for all k > 1. To see this, simply replace
f by the iteration fk. For instance, for k = 2, f2 is the 4-substitution

f2 : {a, b, c} → {a, b, c}4 :
a → abbc
b → bccc
c → cccc

This property is also verified on automata. The 4-recognizable sequence p is
computed by the following 4-automaton.

Figure 9. A 4-automaton computing p
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This automaton is simply the 2-automaton of Figure 2 with the transitions modified
in the following way. The edges are the paths of length 2 of the 2-automaton, with
the labelling 0, 1, 2, 3 instead of 00, 01, 10, 11 respectively.

From the logical point of view, the argument is simple too. The function V2 is
definable in 〈N, +, V4〉. Indeed, if V4(x) = V4(2·x), then V2(x) is equal to V4(x),
otherwise V2(x) is equal to 2·V4(x). The formula ϕ of 〈N, +, V4〉 defining V2(x) = y
is then the following

((V4(x) = V4(2·x)) ∧ (y = V4(x))) ∨ ((V4(x) 6= V4(2·x)) ∧ (y = 2·V4(x))) .

The sequence p is then 4-definable. Indeed, in the formulae of 〈N, +, V2〉 defining
p−1(0) and p−1(1), replace each occurrence of V2 by ϕ. The two new formulae are
formulae of 〈N, +, V4〉 showing the 4-definability of p.

The property observed on the example p holds for any p-recognizable sequences :
they are also pk-recognizable. More generally, they are q-recognizable as soon as p, q
are multiplicatively dependent integers, i.e., there exist k, l > 1 such that pk = ql,
or equivalently p = rk, q = rl, for some r > 2 and k, l > 1.

Proposition 7.1 Let p, q > 2 be multiplicatively dependent integers. Let m > 1
and s : Nm → A be a sequence. Then s is p-recognizable if and only if s is q-
recognizable.

Proof.
We prove that the structures 〈N, +, Vp〉 and 〈N, +, Vpk〉 are equivalent. Function

Vpk is definable in 〈N, +, Vp〉 :

Vpk(x) = y if and only if “y is the greatest power of pk less than or equal to Vp(x)”

The predicate Ppk(y) is definable in 〈N, +, Vp〉, observing that “y is a power of pk

if and only if y is a power of p and pk − 1 divides y − 1”. Indeed, assume that
y − 1 = (pk − 1)z for some z 6= 0 and write y as pak+b, with 0 6 b < k. Then

y − 1 = pb· (pak − 1) + (pb − 1) .

As pk − 1 divides y − 1 and pak − 1, it also divides pb − 1. Hence b = 0. The other
implication is trivial.

Conversely, Vp is definable in 〈N, +, Vpk〉 (this is similar to the case V2 and V4 we
have just explained) :

“If Vpk(x) = Vpk(pk−1·x), then Vp(x) = Vpk(x) ,
else if Vpk(x) = Vpk(pk−2·x), then Vp(x) = p·Vpk(x) ,
. . .
else if Vpk(x) = Vpk(p·x), then Vp(x) = pk−2·Vpk(x) ,
else Vp(x) = pk−1·Vpk(x)” .

Then we have shown that the structures 〈N, +, Vp〉, 〈N, +, Vpk〉 are equivalent
and that the structures 〈N, +, Vql〉, 〈N, +, Vq〉 are also equivalent. By hypothesis p
and q are multiplicatively dependent. Let k, l > 1 be such that pk = ql. It follows
that 〈N, +, Vp〉 and 〈N, +, Vq〉 are equivalent.
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7.2 Base 1 over N
A sequence s : N → A is said to be ultimately periodic if there exists v > 1 such
that

∃n0, ∀n > n0, sn = sn+v .

The integer v is called a period of the ultimately periodic sequence. Ultimately
periodic sequences are a family of interesting sequences, as they are p-recognizable
for any p > 2.

For instance, the sequence u : N → {0, 1} equal to 00001001001001 . . . is ulti-
mately periodic (with v = 3, n0 = 2). It is p-recognizable for any p > 2. Indeed,
un equals 1 if and only if 3 divides n − 4. The set u−1(1) is then defined by the
following formula ϕ(x) of 〈N, +〉

(∃y) (x = 3y + 4) .

The set u−1(0) is defined by ¬ϕ(x). As any formula of 〈N, +〉 is a formula of
〈N, +, Vp〉, the sequence u is p-definable for any p > 2.

This property can also be proved with formal power series or automata. The
formal power series

U(x) =
∑

x3m+4 =
x4

1− x3

associated with u, is rational. It is a root of the polynomial (1−x3)t − x4 ∈ Fp[x][t].
Hence u is p-algebraic for all prime numbers p.

Let p > 2. Let us define v : N→ {0, 1} by vn = un+4, for all n. A p-automaton
A for v has 3 states {q0, q1, q2} and transitions T (qi, b) = qj, for b ∈ {0, . . . , p− 1},
such that

j = p· i + b mod 3 .

The initial state is q0. The output of q0 is 1 and the ouput of q1, q2 is 0. It is easy
to modify A into a p-automaton computing u.

Proposition 7.2 Let s : N→ A be a sequence. If s is ultimately periodic, then s
is p-recognizable for all p > 2.

Proof. Roughly, s−1(a), a ∈ A, is a finite union of arithmetic progressions. As in
the example, one shows that any arithmetic progression is definable in the structure
〈N, +〉 and therefore in 〈N, +, Vp〉.

The previous example suggests intrinsic properties of ultimately periodic se-
quences. The next theorem characterizes ultimately periodic sequences via “auto-
matic”, logical and algebraic arguments.

Theorem 7.3 Let s : N→ A be a sequence. The following are equivalent :
(1) s is ultimately periodic,
(2) s is definable in 〈N, +〉,
(3) The series S(x) =

∑
n>0 snx

n is rational :

S(x) =
p(x)

q(x)
with p(x) ∈ Z[x], q(x) ∈ Z[x]\{0} ,
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(4) s is 1-recognizable (by a 1-automaton),
(5) The sets s−1(a), a ∈ A, are rational subsets of the monoid N.

The example of the sequence u can help to imagine a proof for Theorem 7.3.
It is proved in [59] (see also [28]) that any formula ϕ(x1, . . . , xm) of 〈N, +〉 can

be written as a finite combination of disjunctions, conjunctions and negations of the
formulae

ti(x1, . . . , xm) > ci 1 6 i 6 r ,
ti(x1, . . . , xm) = ci mod d r < i 6 s ,

where ci ∈ Z, d, m ∈ N are constants and ti(x1, . . . , xm) is equal to
∑

ui,jxj, with
ui,j ∈ Z. This explains why implication (2)⇒ (1) holds.

The equivalence (1) ⇔ (3) is analoguous to the fact that a real number has
periodic expansion if and only if it is rational.

A 1-automaton looks like a “frying pan”, it is something quite special and has
little relationship to p-automata. The integer n is represented by the “1-ary ex-
pansion” 0n, here 0 could be replaced by any other symbol (see references [24, 8]
for more details). It is easy to prove the equivalence (1) ⇔ (4). For the preceding
example u, a 1-automaton looks like

Figure 10. A frying pan automaton

Saying that a sequence s is ultimately periodic is the same as saying that the sets
s−1(a), a ∈ A, are rational (or equivalently recognizable) subsets of the free monoid
(N, +) generated by 1. Indeed, rational subsets of N are exactly finite unions of
integers and linear progressions. For instance, the set u−1(1) of the sequence u is
the rational subset 14.(13)∗ of N (where the product operation is here interpreted as
the addition in N).

7.3 Base 1 over Nm

First we must define a convenient generalization to Nm of ultimately periodic se-
quences. In order to keep an analog of Theorem 7.3 and Proposition 7.2 in all
dimensions, the logical characterization (2) in Theorem 7.3 is clearly a good candi-
date, since definability in 〈N, +〉 is a notion independent of the dimension.

S. Ginsburg and E. Spanier showed in [35] that M ⊆ Nm is definable in 〈N, +〉
if and only if it is semilinear, which means that M is defined by a finite disjunction
of formulae ϕ(x) of the following form :

either (x = a)
or (∃y1) . . . (∃yj) (x = a0 + a1y1 + · · ·+ ajyj)
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where x is the m-tuple (x1, . . . , xm), a, a0, . . . , aj ∈ Nm are constants and a· y is
intended as the product (a1y, . . . , amy). Hence M is semilinear if and only if it is
a finite union of points (formula x = a) and of cones (formula (∃y1) . . . (∃yj)(x =
a0 + a1y1 + · · ·+ ajyj)).

Semilinearity is equivalent to rationality over the monoid Nm. Indeed the two
previous formulae define the rational sets {a} and a0· {a1, · · · , aj}∗ of Nm. Conversely
one can show that any rational subset of Nm is semilinear by induction on the rational
operations.

Recently A. Muchnik gave an impressive characterization of semilinear sets in
terms of “local periodicity” [54]. It is the last characterization in the next theorem.
Muchnik mentioned it as the definability criterion. We give the proof of this criterion
in Section 8.1.

Theorem 7.4 Let m > 1 and s : Nm → A be a sequence. Let Ma = s−1(a), for
each a ∈ A. The following are equivalent :
(1) s is definable in 〈N, +〉,
(2) each Ma is semilinear,
(3) each Ma is a rational subset of the monoid Nm,
(4) each Ma is locally periodic and every (m − 1)-dimensional sections of Ma is
definable in 〈N, +〉.

The last characterization needs some explanations. Let M ⊆ Nm. The section
Mi,c of M is obtained by fixing the ith component to the constant c :

Mi,c = {n ∈M | ni = c} .

Then Mi,c ⊆ Ni−1 × {c} × Nm−i can be considered as a subset of Nm−1.
We say that M is locally periodic if there exists a finite set V of vectors v ∈ Nm

different from 0 such that for some K > |V | and L > 0, one has :

(∀n ∈ Nm, |n| > L)(∃v ∈ V )(M is v-periodic inside N (n, K)) .

Let X ⊆ Nm, set M is v-periodic inside X if for any m, m + v ∈ X

m ∈M ⇔ m + v ∈M .

The vector v is called a period for M . In N2, this means that M is periodic in the
direction of v, when looking at M through the “window” X.
The set N (n, K) is the K-neighbourhood of n, it is the set

N (n, K) = {n + r | r ∈ Nm, |r| < K} ,

where the norm |r| of r is equal to max{r1, . . . , rm}. For instance, in N2, this is a
square with size K and bottom-left corner n. Finally, notation |V | means

∑
v∈V |v|.

Therefore M is locally periodic if there exists a finite number of periods v for M
such that for some large enough K, for any K-neighbourhood N (n, K) far enough
from the origin 0, M seen through N (n, K) is periodic with one of the periods v.

Let us now look at an example. The following sequence c : N2 → {0, 1} is the
characteristic sequence of a semilinear set. Figure 11 shows two points (0, 1), (2, 4)
and two cones one of which is degenerated into the diagonal.
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↑ x2
...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −→

Figure 11. The characteristic sequence of a semilinear set

The set c−1(1) is defined by the formula ϕ(x1, x2) of 〈N, +〉

(x1, x2) = (0, 1)
∨ (x1, x2) = (2, 4)
∨ (∃y)( (x1, x2) = (1, 1)y )
∨ (∃y1)(∃y2)( (x1, x2) = (4, 3) + (1, 2)y1 + (1, 0)y2 ) .

It is easy to find, from this formula, a rational expression for c−1(1) :

c−1(1) = (0, 1) ∪ (2, 4) ∪ (1, 1)∗ ∪ (4, 3)· {(1, 2), (1, 0)}∗ .

Furthermore, c−1(1) is locally periodic with V = {(2, 2), (1, 2), (1, 0)} (see Figure
11). Indeed, far enough from the origin, a K-neighbourhood is either completely
inside the cone defined by (∃y1)(∃y2) ( (x1, x2) = (4, 3) + (1, 2)y1 + (1, 0)y2 ), either
completely outside this cone, or it overlaps one of its borders. In the last case, we
choose period (1,2) for the border defined by (1,2) and period (1,0) for the other
border. When the K-neighbourhood is inside the cone, it can meet the diagonal
defined by (∃y)( (x1, x2) = (1, 1)y ) or not. For both situations, period (2,2) is
convenient. Finally, outside the cone, any period works.

As any formula of 〈N, +〉 is trivially a formula of 〈N, +, Vp〉, for any p > 2, we
have the analog of Proposition 7.2.

Proposition 7.5 Any sequence s : Nm → A definable in 〈N, +〉 is p-recognizable,
for all p > 2.
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Of course, there exist p-recognizable sequences which are not definable in 〈N, +〉.
The characteristic sequence p of the powers of 2 (Section 4.1) and the sequence
t describing Pascal triangle modulo 2 (Section 5.1) are such examples. Muchnik’s
definability criterion allows to decide whether a p-recognizable sequence s : Nm → A
is definable in 〈N, +〉 [54]. This result was already proved for the one-dimensional
case [39, 42, 55]. The proof in the general case is easy [54], using the decidability of
Th(〈N, +, Vp〉) (Corollary 6.2); it is given in Section 8.1.

Proposition 7.6 Let m > 1 and p > 2. Let s : Nm → A be a p-recognizable
sequence. It is decidable whether s is definable in 〈N, +〉.

To conclude this section, let us remark that in Nm, m > 2, Kleene’s theorem is
no longer true : the family of recognizable subsets is strictly included in the family
of rational subsets (the diagonal is rational but not recognizable). Recognizable sets
may be understood as a certain “tiling” of Nm by a finite number of parallelepipeds.
Theorem 7.4 shows that this concept does not give a sufficient generalization of
ultimately periodic sequences in Nm.

This is emphasized by the theorem of Cobham-Semenov in the next section.

7.4 Theorem of Cobham-Semenov

Any ultimately periodic sequence s : N → A, and more generally any sequence
s : Nm → A definable in 〈N, +〉, is p-recognizable for any p > 2 (Propositions 7.2,
7.5). In 1969, A. Cobham proved the converse in the case of N [15]. Later in 1977,
A. Semenov generalized this result to Nm [66]. As a matter of fact, Cobham and
Semenov proved a stronger property : as soon as a sequence s : Nm → A is p-
and q-recognizable, for some multiplicatively independent integers p, q > 2, then s
is definable in 〈N, +〉. We recall that p, q > 2 are multiplicatively independent if
and only if the equation pk = ql has the solution k = l = 0 only. Using the logical
characterizations (see Theorems 5.1 and 7.4), this is reformulated in the following
way : let p, q > 2 be multiplicatively independent integers, then s is both p- and
q-definable if and only if s is definable in 〈N, +〉. This result says that if s can be
defined by using +, Vp or +, Vq, then it can be defined by using + only. This is
clearly not obvious.

The theorem of Cobham-Semenov theorem is one of the most beautiful results in
the theory of recognizability of natural numbers. We give in Section 8.2 an elegant
proof of this result, following the reference [54].

Theorem 7.7 (Cobham-Semenov) Let m > 1, let p, q > 2 be multiplicatively
independent integers. Let s : Nm → A be a sequence. If s is p-recognizable and
q-recognizable, then s is definable in 〈N, +〉.

The characteristic sequence of powers of 2 is certainly not ultimately periodic. It
is 2-recognizable and also 2k-recognizable, for all k > 1. As 3 and 2 are multiplica-
tively independent, this sequence is not 3-recognizable and thus not 3k-recognizable,
k > 1. More generally, it is not p-recognizable, for each p > 2 which is not a power
of 2.
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The relation “being multiplicatively dependent” is an equivalence relation on
N\{0, 1}. In each equivalence class, there exists a smallest integer p which we call
simple. Any other element of this class is a power pk of p, k > 1. An integer
p is simple if and only if gcd(k1, . . . , kl) = 1 where p = pk1

1 . . . pkl
l is the prime

factorization of p. The first simple integers are 2, 3, 5, 6, 7, 10, 11, . . . .
Assume the sequence s : Nm → A is p-recognizable, but not definable in 〈N, +〉.

We can suppose that p is simple. The theorem of Cobham-Semenov states that the
only bases q for which s is q-recognizable are q = pk, k > 1.

To summarize, sequences s are classified into 3 distinct groups :

1. The sequences p-recognizable in every base p > 2

These sequences are exactly the sequences definable in 〈N, +〉. They are also
p-definable for each p > 2.

2. The sequences p-recognizable for certain bases p only

These sequences are not definable in 〈N, +〉. They are only pk-recognizable for
k > 1 (p being simple).

3. The sequences not p-recognizable for any p > 2

The characteristic sequence of squares belongs to this family (see Section 4.2
and Corollary 6.3).

7.5 Bibliographic Notes

The first step towards the theorem of Cobham-Semenov is in Büchi’s paper [9].
He proved that Pp is definable in 〈N, +, Pq〉 if and only if p, q are multiplicatively
dependent. In this paper, he also showed that ultimately periodic sequences are
p-recognizable for all p > 2. He also proved that the pk-recognizable sequences are
exactly the p-recognizable sequences.

In 1969, A. Cobham proved Theorem 7.7 in the case of subsets M of N. In a
footnote, he mentioned with no reference, the weaker theorem established indepen-
dently by J. Nievergelt, that “a set which is recognizable in n-ary notation for all
n > 2 is necessarily ultimately periodic”. The property proved by Büchi, that Pp

is definable in 〈N, +, Pq〉 if and only if p, q are multiplicatively dependent, helped
Cobham to formulate his theorem in the more general situation of sets M ⊆ N both
p- and q-recognizable, with p, q multiplicatively independent integers.

Cobham’s proof is difficult. It is based on a deep analysis of p- and q-automata
computing the characteristic sequence m of M . The proof is divided into two parts.

The first part states that if M ⊆ N is p- and q-recognizable, with p, q being
multiplicatively independent, then m is syndetic, that is there exists v > 1 such
that

∃n0, ∀n > n0, ∃v′, 0 < v′ 6 v, mn = mn+v′ .

In other words, the distance between two consecutive occurrences of a given letter
in the sequence is bounded by v. The property of syndeticity is weaker than the
property of ultimate periodicity. Indeed the Thue-Morse sequence is syndetic but
not ultimately periodic (see Section 4.5).
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The second part of the proof is more technical. Cobham proves that the sequence
m is ultimately periodic, by extracting the period of the sequence from the automata.

In his book [24], S. Eilenberg devotes Chapter 5 to the study of integers and the
different notions of recognizability. He mentioned Cobham’s theorem without proof
but with the comment “It is a challenge to find a more reasonable proof of this fine
theorem” (p. 118).

In 1977, A. Semenov generalized Cobham’s theorem to subsets M of Nm, m > 1
[66]. His proof is by induction on m. The first step, m = 1, is Cobham’s proof.
Twenty-eight lemmas lead to the theorem. So, Cobham’s proof together with Se-
menov’s proof establish Theorem 7.7.

Stimulated by Eilenberg’s challenge, several researchers have attempted to find
a simpler proof of Theorem 7.7 in the case m = 1. In 1982, G. Hansel succeeded in
proving Cobham’s theorem in a more reasonable way [36] (see also [62, 58]). The
proof is combinatorial. The first part is the same than in [15] where the characteristic
sequence m of M ⊆ N is proved to be syndetic. The second part is simpler and
more comprehensible. To prove that m is ultimately periodic, instead of directly
constructing a period for the sequence as done by Cobham, Hansel used the following
characterization [52, 53] : a sequence s is ultimately periodic if and only if there
exists l > 1 such that the number of recurrent factors of length l of the sequence,
is bounded by l (a factor is a word snsn+1 · · · sm of consecutive letters of s; and a
factor is recurrent if it occurs infinitely often inside s).

Very recently, C. Michaux and R. Villemaire gave another simpler proof [49].
Their proof has also two parts. The first part is the syndeticity of the sequence as
in [15]. The second one is a proof ab absurdo. It uses all the expressive power of
the structure 〈N, +, Vp〉, as pointed out by Corollary 6.4. The combinatorial part of
the proof is very reduced.

Up to now, there does not exist a counterpart to the notion of syndeticity for
multi-dimensional sequences. In 1991, A. Muchnik gave a comprehensible proof
of the theorem of Cobham-Semenov, for any m > 1. The proof is based on his
powerful definability criterion [54] and has plenty of new ideas. It is much simpler
than Semenov’s proof and also gives a new proof of Cobham’s theorem. The most
impressive thing about Muchnik’s proof is that he attacks the problem in a direct
fashion but still succeeds in solving it. Actually he takes a natural number n ∈M ,
transforms it from base p to base q and conversely, using the relations ∼p,M and
∼q,M , in order to obtain a n′ ∈ M which is close to n. He shows in this way that
M is ultimately periodic. Many researchers have tried to attack the question in this
way, but there are many difficulties that only Muchnik succeeded to overcome.

The main result of [49] is extended to the multi-dimensional case in [50], using
Muchnik’s definability criterion. They show that if M ⊆ Nm is not definable in
〈N, +〉, then there exists a non-syndetic 1-dimensional set L which is first-order
definable in the structure 〈N, +, RM 〉 (RM is the relation of membership to M).
This yields a new proof of the theorem of Cobham-Semenov.
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8 Muchnik’s proof

We give in this section an account as precise as possible of the work of Muchnik.
This is in order to make his result available to people who do not read Russian.

8.1 Definability Criterion

We here prove in details the definability criterion stated by Muchnik in [54]. We
recall its statement for sets M ⊆ Nm :

Theorem 8.1 Let M ⊆ Nm. Then M is definable in 〈N, +〉 if and only if M is
locally periodic and if any of the sections of M is definable in 〈N, +〉.

Proof. The proof of the first implication is not given here, but in the Appendix.
This implication is not necessary to the proof of the theorem of Cobham-Semenov.
Only the other one is used.

For the converse, assume that all the sections of M are definable in 〈N, +〉 and
there exists a finite set V of periods v ∈ Nm\{0} such that for some K > |V | and
L > 0, we have

∀n ∈ Nm, |n| > L, ∃v ∈ V, M is v-periodic inside N (n, K) .

We prove by induction on Card V that M is definable in 〈N, +〉.
(1) First we suppose that V = {v}. Therefore, any neighbourhood has the

same period v. This means that M is v-periodic as soon as we are far enough from
the origin.
The set M is easily definable using its sections. Indeed, let v = (v1, . . . , vm), we
denote for any i, 1 6 i 6 m,

Mi = Mi,L ∪Mi,L+1 ∪ · · · ∪Mi,L+vi−1 .

Mi is the union of the vi consecutive sections of M where the ith component has
been fixed to L, L+1, . . . , L+vi−1 respectively. We also denote for any i, 1 6 i 6 m,
the sets

Ni = Mi,0 ∪Mi,1 ∪ · · · ∪Mi,L−1 .

The sets Mi, Ni and
⋃

i Mi,
⋃

i Ni are definable in 〈N, +〉 as all the sections of M are
definable by assumption.
We have

M =
⋃
i

Ni ∪
⋃
i

Mi· v∗

where ∪, · ,∗ are the rational operations in the monoid Nm. The set M is definable
in 〈N, +〉 because the set

⋃
i Mi· v∗ is definable by the following formula ϕ(x) (recall

that v is a constant)

(∃y ∈
⋃
i

Mi)(∃j > 0) (x = y + j.v) .

(2) Suppose now that Card V > 2. Let v ∈ V .
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We show that M is definable in 〈N, +〉 via the sets B(M, v) and B(M,−v). These
sets will be definable in 〈N, +〉 by the induction hypothesis.
The set B(M, v) is the “border of M in the direction v” and is defined as

B(M, v) = {n ∈M | n + v /∈M} .

In the same way,

B(M,−v) = {n ∈M | n− v /∈M} .

The set B(M,−v) is never empty since M ⊆ Nm.
The set M is definable in 〈N, +〉 using the borders B(M, v),B(M,−v). Indeed,

given n ∈M , consider the “line”

L = {n + j· v | j ∈ Z} .

This line always intersects B(M,−v). We have to consider two cases : this line
intersects B(M, v) or it does not. The second case is described by the following
formula ϕ(x)

(∃y ∈ B(M,−v)) ((∃j1 > 0)(x = y + j1.v)) ∧ ((∀j2 > 0)(y + j2.v /∈ B(M, v))) .

In the first case, n is placed between a point of B(M,−v) and the point of B(M, v)
met just after, in the direction of v. The corresponding formula φ(x) is

(∃y1 ∈ B(M,−v))(∃y2 ∈ B(M, v))(∃j1, j2 > 0)
(x = y1 + j1.v) ∧ (y2 = x + j2.v)
∧(∀j)[ (0 < j < j1 + j2)→ (y1 + j.v /∈ B(M,−v) ∧ y1 + j.v /∈ B(M, v)) ] .

Hence M is defined by the formula ϕ(x) ∨ φ(x).

It remains to show that B(M, v) and B(M,−v) satisfy the induction hypothesis.
Their sections are definable in 〈N, +〉 because they can be defined from the sections
of M . For instance, n belongs to section B(M, v)i,c where the ith component is fixed
to c if and only if n ∈ Mi,c and n + v /∈Mi,c+vi .
We now prove that B(M, v) is V \{v}-periodic. Let

K ′ = K − |v| > |V \{v}| and L′ = L .

Let n ∈ Nm, |n| > L′. By hypothesis, M is w-periodic in N (n, K), for some w ∈ V .
Consider N (n, K ′). If v 6= w, take m and m + w in N (n, K ′). Then

m, m + w and m + v, m + w + v

all belong to N (n, K) inside which M is w-periodic. It follows that B(M, v) is w-
periodic inside N (n, K ′). If v = w, then B(M, v) is empty inside N (n, K ′) and then
w-periodic in N (n, K ′) for any w ∈ V \{v}.
In the same way, one proves that B(M,−v) is V \{v}-periodic with K ′ = K − |v|
and L′ = L + |v|.
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We now give the proof of Proposition 7.6 mentioned in Section 7.3, stating that
it is decidable whether a p-definable sequence is definable in 〈N, +〉.

Proposition 8.2 Let m > 1 and p > 2. Let s : Nm → A be a p-recognizable
sequence. Then it is decidable whether s is definable in 〈N, +〉.

Proof. By Proposition 5.2, it is sufficient to give the proof for p-recognizable sets
M ⊆ Nm.

We first consider the one-dimensional case m = 1. Let ϕM (x) be a formula of
〈N, +, Vp〉 defining M . The characteristic sequence m of M is ultimately periodic if
and only if

(∃t)(∃z)(∀x)[ (x > z ∧ ϕM (x))→ ϕM(x + t) ] .

This is a sentence of 〈N, +, Vp〉. As Th(〈N, +, Vp〉) is a decidable theory, it is decid-
able whether this sentence is true, i.e., whether m is ultimately periodic.

We now treat the two-dimensional case. Let M ⊆ N2 be a p-recognizable set and
ϕM (x, y) a formula defining M in 〈N, +, Vp〉. The proof is the same : again we want
to find a formula in 〈N, +, Vp〉 which expresses that M is definable in 〈N, +〉. By the
definability criterion, M is definable in 〈N, +〉 if and only if M is locally periodic
and all its sections are definable in 〈N, +〉.

Consider the second condition. Sections of M have dimension 1. So they are de-
finable in 〈N, +〉 if and only if their characteristic sequences are ultimately periodic.
As we did before, the following formula of 〈N, +, Vp〉

(∀y)(∃t)(∃z)(∀x)[ (x > z ∧ ϕM (x, y))→ ϕM (x + t, y) ]

states that all sections of M , when fixing the second component y, are definable
in 〈N, +〉. The same kind of formula exists for sections of M , when fixing the first
component.

The local periodicity of M is also definable in 〈N, +, Vp〉. In the definition of local
periodicity, the finite set V of periods and the integer K > |V | cannot be directly
expressed in 〈N, +, Vp〉. However, we first notice that the condition ∃K > |V | can
be replaced by the stronger condition ∀K (by checking the proof of the definability
criterion). Secondly, the set V can be replaced by the finite set of v ∈ Nm such that
|v| 6 d for some constant d. Hence M is locally periodic if and only if

(∃d)(∀K)(∃L)(∀n ∈ Nm, |n| > L)(∃v, |v| 6 d) M is v-periodic in N (n, K) .

This new condition is definable in 〈N, +, Vk〉 : the norm | | and the relation ∈
N (n, K) are both definable, the v-periodicity is also definable as follows

(∀x)[ ( x ∈ N (n, K) ∧ x + v ∈ N (n, K) ) → ( ϕM(x)↔ ϕM(x + v) ) ] .

So it is possible to say with a sentence of 〈N, +, Vp〉 that M is definable in 〈N, +〉.
We can decide if this sentence is true, since Th〈N, +, Vp〉 is decidable.

The previous cases m = 1 and m = 2 show how the general case works. The
proof is by induction on m. The basis of the induction is proved above. Let m > 2
be a fixed integer. Let M be a p-recognizable subset of Nm defined by some formula
ϕM (x) of 〈N, +, Vp〉. We express as before the local periodicity property. A formula
stating that the sections of M are definable exists by induction hypothesis, as the
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sections have dimension m−1. Therefore, there exists a sentence of 〈N, +, Vp〉 which
says that M satisfies the definability criterion. This sentence is certainly complex
but we can decide if it is true or false.

8.2 Proof of the Theorem of Cobham-Semenov

In this section, we give Muchnik’s proof for the theorem of Cobham-Semenov (The-
orem 7.7). The proof is not exactly the same as in [54]; some parts are modified or
shortened and other ones are given in more detail. It uses the definability criterion
stated in Theorem 8.1.

Theorem 8.3 Let m > 1, let p, q > 2 be multiplicatively independent integers.
If M ⊆ Nm is p- and q-recognizable, then its characteristic sequence is definable in
〈N, +〉.

We first recall properties of the relation ∼p,M associated with any set M ⊆ Nm

(see Section 4.3 or [24]). Let n, m ∈ Nm, then

n ∼p,M m ⇔ [ npk + r ∈M ⇔ mpk + r ∈M ∀k > 0, ∀r ∈ Nm, |r| < pk ] .

Set M is p-recognizable if and only if ∼p,M has finite index, M is a union of some
equivalence classes of ∼p,M . The relation ∼p,M is p-stable, i.e.,

n ∼p,M m ⇒ npk + r ∼p,M mpk + r

for |r| < pk.
The following lemmas will be useful.

Lemma 8.4 Let m > 1 and p, q > 2. If M ⊆ Nm is p- and q-recognizable, then
any equivalence class C of ∼p,M is also p- and q-recognizable.

Proof. To simplify the notations, we limit the proof to the case m = 1.
From the properties above, C is clearly p-recognizable. Consider the minimal

automaton A(L) = (Q, {q0}, F, T ) of the set

L = { w ∈ {0, . . . , p− 1}∗ | [w]p ∈M } .

The relation ∼p,M is the translation to N of the right-congruence ∼L defined on
{0, . . . , p−1}∗. The class C of ∼p,M corresponds to a class CL of ∼L. By construction
of A(L), CL is some of its states, that we denote by r. Moreover, for any state r′ 6= r,
there exists a word u, depending on r′, such that T (r, u) is final and T (r′, u) is not,
or the opposite (see Section 2). We then define the subset of {0, . . . , p− 1}∗

L(r′) = {w | wu ∈ L} if T (r, u) is final ,
= {w | wu /∈ L} otherwise .

One verifies that
CL =

⋂
r′ 6=r

L(r′) .
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Coming back to N, this gives

C =
⋂

r′ 6=r

M(r′) .

where M(r′) = {[w]p | w ∈ L(r′)}. Each set M(r′) is q-recognizable using Corollary
6.4. Indeed M is q-definable and wu ∈ L if and only if [w]p· p|u| + [u]p ∈ M (p|u| is
a constant). So C is itself q-recognizable.

Lemma 8.5 Let p, q > 2 be multiplicatively independent integers. Then for any
real numbers r1, r2 with 0 6 r1 < r2, there exist arbitrarily large integers k, l such
r1 < ql/pk < r2.

The proof of this lemma can be found in [58] for example. It is based on Kro-
necker’s theorem which states that if θ is an irrational number, then the fractional
parts of its multiples nθ, n > 0, are dense in the interval [0, 1] (see [38]).

We are now going to prove Theorem 8.3.

Proof.
The idea of the proof is the following.

We have to prove that M is locally periodic and all the sections of M are definable in
〈N, +〉. The proof will use induction on m; this is necessary to prove the definability
of the sections. However, the property of local periodicity will be proved directly,
independently of the induction.
We first show that M is locally periodic but for the pk-neighbourhoods N (npk, pk) of
npk only, (for some well-chosen power pk). This will be possible using an elaborate
equivalence relation ∼p,q,M defined from the relations ∼p,M and ∼q,M .
In a way to reach all the neighbourhoods, we repeat the previous argument to the
following subset M ′ of N2m, instead of M :

M ′ = { (n1, n2) | n1 + n2 ∈M } .

A well-chosen projection on Nm of the neighbourhoods N ((n1, n2)p
k, pk) in N2m will

yield all the neighbourhoods of Nm.
We now go into the details of the proof.

(A) By Lemma 8.4, any equivalence class C of ∼p,M is p- and q-recognizable.
In particular, any ∼q,C has finite index. We define a new equivalence relation ∼p,q,M

over Nm, from the relations ∼p,M and ∼q,C :

n ∼p,q,M m ⇔ [ n ∼q,C m, for all classes C ] .

In other words, ∼p,q,M is the finite intersection (over the classes C of ∼p,M) of the
relations ∼q,C. The new relation has interesting properties : ∼p,q,M has finite index
and

1. n ∼p,q,M m ⇒ n ∼p,M m.

2. n ∼p,q,M m ⇒ n ∼q,M m.
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The first property is proved as follows. Let C be the equivalent class of ∼p,M

containing n. Then

n ∼p,q,M m ⇒ n ∼q,C m ⇒ m ∈ C .

And if n, m ∈ C , then n ∼p,M m. For the second property, the proof is the following
one. If n ∼p,q,M m, then n ∼q,C m for all classes C of ∼p,M , and also nql + r ∼q,C

mql + r. Thus

nql + r ∈M ⇒ nql + r ∈ C for some C ⊆ M ⇒ mql + r ∈ C ⊆ M .

The conclusion follows.

(B) We here prove that M is locally periodic but for some neighbourhoods
only. These neighbourhoods have the particular form N (npk, pk).

(a) For any infinite class D of ∼p,q,M we choose a pair (xD, yD) of elements of
D, simply denoted (x, y), such that

1. for all α ∈ Zm with |α| 6 1, if x + α, y + α ∈ Nm, then x + α ∼p,q,M y + α ,

2. there exists n ∈ Nm\{0} such that x + n = y, i.e., x < y .

This pair (x, y) always exists because ∼p,q,M has finite index and any set of Nm of
mutually incomparable elements is finite [25]. More precisely, given z ∈ D, for any
α ∈ Zm such that |α| 6 1 and z + α ∈ Nm, let Dα be the class of ∼p,q,M containing
z + α. Now list these α’s and the related classes Dα. As D is infinite, there are
infinitely many z ∈ D with the same list of classes Dα. We choose x and y among
them.
Then using Lemma 8.5, we choose k and l such that 1 < ql/pk < 1+ε, or equivalently

0 < ql − pk < εpk (1)

where ε satisfies the following condition : for any chosen y = (y1, . . . , ym), for all
1 6 i 6 m,

(1 + yi)ε < 1 . (2)

In particular, as x < y, we have
xiε < 1 . (3)

(b) We first prove that (y− x)(ql− pk) is a period for M inside the particular
neighbourhood N (xpk, pk) : precisely for all m ∈ N (xpk, pk),

m ∈M ⇔ m + (y − x)(ql − pk) ∈M .

Let m = xpk + r ∈ N (xpk, pk). We define x′ = (x′1, . . . , x
′
m) and r′ = (r′1, . . . , r

′
m)

in Nm such that for any 1 6 i 6 m, x′i and r′i are respectively the quotient and the
remainder of the division of xip

k + ri by ql. Then

x′ql + r′ = xpk + r |r′| < ql . (4)

We have
x′ = x + α with |α| 6 1 and α 6 0 .
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Indeed as ql > pk, then x′i 6 xi for any 1 6 i 6 m, by (1) and (4). On the other
hand, xi − 1 6 x′i otherwise x′i 6 xi − 2 and by (1), (3),

x′iq
l + r′i < (xi − 2)ql + ql 6 xip

k + xi(q
l − pk)− ql < xip

k ,

which is impossible by (4). Therefore by (4)

(x + α)ql + r′ = xpk + r . (5)

We have x + α, y + α ∈ Nm and as x + α ∼p,q,M y + α,

xpk + r ∈M ⇔ (y + α)ql + r′ ∈M (6)

using (5) and property 2 of ∼p,q,M .
Now let y′ = (y′1, . . . , y

′
m) and s = (s1, . . . , sm) in Nm be such that for any 1 6

i 6 m, y′i and si are respectively the quotient and the remainder of the division of
(yi + αi)q

l + r′i by pk, that is

y′pk + s = (y + α)ql + r′ |s| < pk . (7)

We have
y′ = y + β with |β| 6 1 and α 6 β .

Indeed as pk < ql, then yi + αi 6 y′i for all 1 6 i 6 m, by (1) and (7). We have also
y′i 6 yi + 1 otherwise yi + 2 6 y′i and by (1), (2) (remember α 6 0),

y′ip
k + si > (yi + 2)pk > (yi + αi)q

l + yi(p
k − ql) + 2pk > (yi + αi)q

l + ql ,

which is in contradiction with (7). Hence by (7)

(y + β)pk + s = (y + α)ql + r′ . (8)

As y + β, x + β > x + α ∈ Nm and as y + β ∼p,q,M x + β, it follows from property 1
of ∼p,q,M that

(y + α)ql + r′ ∈M ⇔ (x + β)pk + s ∈M .

Together with (6), this yields

xpk + r ∈M ⇔ (x + β)pk + s ∈M ⇔ xpk + r + (y − x)(ql − pk) ∈M .

Indeed using (8) and (5)

βpk + s− r = βpk + (y + α)ql − (y + β)pk + r′ − r

= (y + α)ql − ypk + xpk − (x + α)ql

= (y − x)(ql − pk) .

(c) For any infinite class D of ∼p,q,M , we denote by vD the period (y−x)(ql−pk).
The relation ∼p,q,M has finite index, then there exists U > 0 such that, as soon as
|n| > U , the class D of ∼p,q,M containing n is infinite. Let us now show that M is vD-
periodic inside the pk-neighbourhood N (npk, pk) of n. Let m, m + vD ∈ N (npk, pk).
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More precisely m = npk + r with |r| < pk and |r + vD| < pk. Using (b), we have the
following equivalences

m ∈ M ⇔ npk + r ∈M

⇔ xDpk + r ∈M

⇔ xDpk + r + vD ∈M

⇔ npk + r + vD ∈M

⇔ m + vD ∈M .

Figure 12. The local periodicity of M inside the neighbourhoods N (npk, pk)

(C) To prove the local periodicity of M inside all the neighbourhoods, we
transfer the results of (B) to the subset of N2m

M ′ = {(n1, n2) | n1 + n2 ∈M}

which is p- and q-recognizable by Corollary 6.4. We add the condition on ε that

ε <
1

6
∑ |yD|

. (9)

We denote by V ′ the finite set of periods vD = (y − x)(ql − pk). We are going to
show that M is locally periodic with the set of periods

V = {v = v1 + v2 | (v1, v2) ∈ V ′}

and parameters K = dpk/3e and L = Upk (the constant U was defined in (c)). We
first verify that |V | < K with (1) and (9).

|V | =
∑

(v1,v2)∈V ′
|v1 + v2| 6 2

∑
vD∈V ′

|vD| 6 2(ql − pk)
∑
|yD − xD| < pk/3 .
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Let u ∈ Nm, |u| > L. We write u as u = npk + r, |r| < pk. We decompose r in Nm

such that r = r1 + r2 with |r1| < 2pk/3 and |r2| 6 pk/3 (see Figure 13).

Figure 13. Projection from N2m to Nm

Then

u = u1 + u2

with u1 = npk + r1, u2 = r2. This corresponds in N2m to the point

(u1, u2) = (n, 0)pk + (r1, r2) .

As |(n, 0)| > U , there exists a period vD = (v1, v2) in V ′ for which M ′ is vD-
periodic inside N ((n, 0)pk, pk). We will prove that this implies, in Nm, that M is
(v = v1 + v2)-periodic inside N (u, K). Let u + t and u + t + v in N (u, K). As
|vD| < pk/3 by (1) and (9), the points

(u1, u2 + t) = (n, 0)pk + (r1, r2 + t)

(u1, u2 + t) + (v1, v2) = (n, 0)pk + (r1 + v1, r2 + t + v2)

both belong to N ((n, 0)pk, pk). Consequently

u + t ∈ M ⇔ (u1, u2 + t) ∈M ′ ⇔ (u1, u2 + t) + (v1, v2) ∈M ′ ⇔ u + t + v ∈M .

Hence (B) and (C) show that M is locally periodic.

(D) We now finish the proof. If m = 1, then M is locally periodic and any of
its sections is a constant which is trivially definable in 〈N, +〉. Let m > 1. Again M
is locally periodic. Its sections are definable in 〈N, +〉 by the induction hypothesis.
Indeed, any section has dimension m−1 and it is p- and q-recognizable by Corollary
6.4.
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9 Related Work

There exist different possible generalizations of the notion of p-recognizable sequence
(see the survey [1]). One generalization is replacing p-substitutions f : B → Bp by
nonuniform substitutions (the images of the letters of B have different lengths). One
well-known example is the Fibonacci substitution defined on B = {0, 1} by f(0) =
01, f(1) = 0. This is related to nonstandard representations of numbers generalizing
p-ary expansions. For instance, any positive integer can be written as

∑
anfn where

fn is the n-th Fibonacci number and an is 0 or 1. Nonstandard representations of
numbers are studied in [56, 30, 6]. For connections between nonuniform substitutions
and nonstandard representations of integers, see [61, 70, 29]. See also [17, 47, 41] for
decision problems related to generalized number systems. Another generalization
of p-recognizable sequence is the notion of p-regular sequence introduced in [2]. A
sequence s has its values sn in a noetherian (possibly infinite) ring R instead of a
finite alphabet A. It is p-regular if and only if the R-module generated by its p-
kernel {(snpk+r)n>0 | k > 0, r < pk}, is finitely generated. The reference [2] contains
the following conjecture : if a sequence s is p- and q-regular, and p and q are
multiplicatively independent, then the formal power series

∑
n>0 snxn is rational.

In Section 7, we classified the sequences into three groups, the last one containing
sequences recognizable in no base. The first proofs of unrecognizability of the set
of squares (in any base) are logical ones [9, 26]. Later, Ritchie gives a more direct
combinatorial proof [63]. The references [51, 16, 24] introduce methods based on the
asymptotic behavior of functions dealing with the gaps between successive elements
of M ⊆ N. These gap theorems easily show that the set of squares or of prime
numbers are never p-recognizable, for any p > 2. For properties of star-height 0 of
p-recognizable sequences for suitable bases p, see also the work [22].

In the present paper, we considered the free monoid ({0, 1, . . . , p − 1}m)∗ for
defining p-recognizable sets of Nm. The monoid ({0, 1, . . . , p − 1}∗)m, which is not
free, could be used for defining another concept of p-recognizable subset of Nm.
For m = 2, M ⊆ N2 is called p-recognizable in this context if and only if the
set L = {((n)p, (m)p) | (n, m) ∈ M} is a recognizable subset of {0, 1, . . . , p− 1}∗ ×
{0, 1, . . . , p−1}∗. Mezei’s theorem then states that L is a finite union of sets L1×L2

where L1, L2 are recognizable sets of {0, 1, . . . , p− 1}∗ (see [24, p. 68]). This leads
to another version of the theorem of Cobham-Semenov [37] : Let p, q > 2 be two
multiplicatively independent integers, if M ⊆ N2 is p- and q-recognizable, then M
is a recognizable subset of N2 (and not only a rational subset of N2 as in Theorem
7.7).

Rational (rather than recognizable) subsets of the monoid {0, . . . , p − 1}∗ ×
{0, . . . , p− 1}∗ are also much studied in relation with nonstandard representations
of numbers [31, 32]. The related automata, called transducers, have their transitions
labelled by pairs of words (u, v) ∈ {0, . . . , p− 1}∗ × {0, . . . , p− 1}∗, rather than by
pairs of letters as done in this paper (see [24]). For the Fibonacci base (fn)n>0 for
example, a number can have several representations; the function of normalization
which transforms any representation into the normal one (obtained by the usual
algorithm) can be realized by a finite transducer [31].

The study of p-recognizable sequences leads to interesting transcendence results
in number theory. If p is a prime number and s a p-algebraic sequence which is not
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ultimately periodic, then the real number
∑

snp
−n is transcendental [45]. This gives

a method to easily generate transcendental numbers, as
∑

2−2n
for example. See

[18] for connections between number theory and finite automata.
In the context of algebraic formal power series, other interesting results concern

diagonals of series [33, 19, 23]. Among them, one states that for a finite field K, the
series S(x) ∈ K[[x]] is algebraic over K[x] if and only if it is the diagonal of some
rational formal power series T (x, y) =

∑
tn,mxnym ∈ K[[x, y]], i.e., S(x) =

∑
tn,nx

n.
Another result is : let K be a field with characteristic p 6= 0, if S(x, y) ∈ K[[x, y]] is
algebraic over K[x, y], then its diagonal is also algebraic (this is also true for more
than 2 variables x, y) [19]. When K is finite, this second theorem follows from the
works of [64], it is also a corollary of Theorem 5.1. Indeed the sequence s associated
with S(x, y) is p-definable by a formula ϕ(x, y) of 〈N, +, Vp〉. The formula ϕ(x, x)
of 〈N, +, Vp〉 shows that the diagonal of S(x, y) is algebraic.

The theories of the structures 〈N, +〉 and 〈N, +, Vp〉 are decidable. It is no longer
true for the structure 〈N, +, Vp, Vq〉 with p and q multiplicatively independent inte-
gers. The structure is indeed equivalent to 〈N, +, · 〉 [73, 74]. This undecidability
result is in a certain way a counterpart to the theorem of Cobham-Semenov, as
indicated by Figure 14. See also [21] for related work.

〈N, +, Vp〉
↗ ↘

〈N, +〉 〈N, +, Vp, Vq〉
↘ ↗

〈N, +, Vq〉

Figure 14. The theory Th(〈N, +, Vp, Vq〉) is undecidable

In the same spirit, the decidability of the weak-monadic second-order theory 〈N, S〉
extended by one relation or by one function, is studied in [27, 69]. Semenov proves
that this decision problem comes back to rather special decision problems for rational
sets [69] (see also [4] for a complete proof). For instance, the weak-monadic second-
order structure 〈N, S〉 enriched by the function y = 2x, already allows to interpret
all the first-order formulae of 〈N, +, · 〉 and thus is an undecidable theory [27].

Several papers study in details rational subsets of Nm (those which are semi-
linear or equivalently definable in 〈N, +〉 according to Theorem 7.4). These sets
are unambigously rational. In other words they are finite unions of points and of
disjoint cones, with cones generated by linearly independent vectors [25, 44]. This
property generally holds in any commutative monoid [25]. Rational subsets of Nm

are classified and characterized in [57] with respect to logical formulae. Another
hierarchy based on rational transductions is proposed for N2 in [5]. See also the
reference [34] for a theorem of Fine and Wilf in N2.

Appendix

We prove in this appendix that any M ⊆ Nm definable in 〈N, +〉 is locally periodic
and has all its sections definable in 〈N, +〉.

The condition on the sections is trivial (see Corollary 6.4).
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By a classical result [59], we can suppose that the formula ϕ(x1, . . . , xm) defining
M is a Boolean combination of the formulae

ti(x1, . . . , xm) > ci 1 6 i 6 r ,
tj(x1, . . . , xm) = ej mod d r < j 6 s ,

where ci, ej, d, m are constants (see also Section 7.2).
Any equation ti(x1, . . . , xm) =

∑
ui,kxk = ci, 1 6 i 6 r, defines an hyperplane

orthogonal to the vector ui = (ui,1, . . . , ui,m). Formulae ti(x1, . . . , xm) > ci divide
Nm into domains. We show how to construct a finite set V of periods for M , from
these inequalities. Let I be a subset of the set of indices {1, . . . , r}. We say that I
is a first-type set if the family of vectors (ui)i∈I generates Nm, otherwise I is called
a second-type set. For any set I ⊆ {1, . . . , r} of second type, let v ∈ Nm\{0} be
such that v = (v1, . . . , vm) is orthogonal to any ui, i ∈ I . We can suppose that the
components vj of v are all divisible by d. These vectors v form the set V (see also
Figure 11).

Let K > |V |, K is the size of the neighbourhoods. Consider a K-neighbourhood
N (n, K), suppose that the hyperplanes ti(x1, . . . , xm) = ci intersecting it are indexed
by a set I of the first type. The intersection of these hyperplanes contains at most
one point. As the size of the neighbourhood is the constant K, the intersection point
is close to N (n, K). Moreover, in Nm there is a finite number of such intersection
points. So it is possible to choose L > 0 such that any neighbourhood N (n, K),
with |n| > L, intersects a set of hyperplanes indexed by a second-type set only.

Now let n ∈ Nm, |n| > L. Then, there is v ∈ V such that v is parallel to each of
the hyperplanes intersecting N (n, K). Vector v is a period for N (n, K). Indeed let
m, m + v ∈ N (n, K). Consider the inequality ti(x) = ti(x1, . . . , xm) > ci associated
with an hyperplane intersecting N (n, K). Then

ti(m) > ci ⇔ ti(m + v) > ci

as v is parallel to this hyperplane. By construction, d divides all the components of
v. it follows that for any formula tj(x) = ej mod d, r < j 6 s, we have

tj(m) = ej mod d ⇔ tj(m + v) = ej mod d .

This proves that m ∈M if and only if m + v ∈ M .
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